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ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 1Form (CNF) formula satis�able:C1 ^ C2 ^ � � � ^ Cm;(1.1)where ^ is a logical and connective.The SAT problem is a core of a large family of computationally intractable NP-complete problems [101, 188]. Such NP-complete problems have been identi�edas central to a number of areas in computing theory and engineering. Since SATis NP-complete, it is unlikely that any SAT algorithm has a fast worst-case timebehavior. However, clever algorithms can rapidly solve many SAT formulas ofpractical interest. There has been great interest in designing e�cient algorithms tosolve most SAT formulas.In practice, SAT is fundamental in solving many problems in automated reason-ing, computer-aided design, computer-aided manufacturing, machine vision, data-base, robotics, integrated circuit design automation, computer architecture design,and computer network design (see Section 14). Therefore, methods to solve SATformulas play an important role in the development of e�cient computing systems.Traditional methods treat a SAT formula as a discrete, constrained decisionproblem. In recent years, many optimization methods, parallel algorithms, andpractical techniques have been developed. In this survey, we present a generalframework (an algorithm space) that integrates existing SAT algorithms into a uni-�ed perspective. We describe sequential and parallel SAT algorithms and comparethe performance of major SAT algorithms including variable setting, resolution,local search, global optimization, mathematical programming, and practical SATalgorithms. At the end of this survey, we give a collection of practical applicationsof the satis�ability problem.This paper is organized as follows.1. Introduction2. Constraint Satisfaction Problems3. Preliminaries4. An Algorithm-Space Perspective of SAT Algorithms5. SAT Input Models6. Splitting and Resolution7. Local Search8. Global Optimization9. Integer Programming Method10. Special Subclasses of SAT11. Advanced Techniques12. Probabilistic and Average-Case Analysis13. Performance and Experiments14. Applications15. Future Work16. ConclusionsIn the next section, we describe the constraint satisfaction problem (CSP) and itsclose relationship to the SAT problem. Section 3 gives preliminaries for the paper.In Section 4, we give a general framework (an algorithm space) that puts existingSAT algorithms into a uni�ed perspective. This is followed by a brief overview ofthe basic SAT algorithm classes and a discussion of the general performance eval-uation approaches for SAT algorithms. In Section 5, some SAT problem-instancemodels are given. Section 6 describes the variable setting and resolution procedures



2 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHfor solving SAT formulas. Local search algorithms, global optimization techniquesand integer programming approaches for solving SAT formulas are discussed, re-spectively, in Sections 7, 8, and 9. Section 10 discusses special subclasses of theSAT problem. Some advanced techniques for solving SAT formulas are describedin Section 11. Section 12 gives probabilistic and average-case analysis of the SATproblem.Experimental results and performance comparisons of several major SAT al-gorithms are given in Section 13. Presently for hard random 3-SAT problem in-stances, a complete SAT algorithm could solve a SAT problem with a few hundredvariables. An incomplete SAT algorithm such as WSAT can solve SAT probleminstances with 2,000 variables on an SGI Challenge with a 70 MHz MIPS R4400processor [475, 474]. The randomized local search algorithm, e.g., SAT1.5, cansolve various SAT problem instances with over 10,000 variables on a SUN SPARC20 workstation comfortably [209, 212, 219]. Most practical SAT solvers used inindustrial applications are problem speci�c. We collected some real experimentalresults in Section 13. Section 14 summarizes some applications of the SAT prob-lem. Future work for SAT research is discussed in Section 15. Finally, Section 16concludes the paper.2. Constraint Satisfaction ProblemsA constraint satisfaction problem (CSP) is to determine whether a set of con-straints over discrete variables can be satis�ed. Each constraint must have a formthat is easy to evaluate, so any di�culty in solving such a problem comes fromthe interaction between the constraints and the need to �nd a setting for the vari-ables that simultaneously satis�es all the constraints [433]. In a SAT formula, eachconstraint is expressed as a clause, making SAT a special case of the constraint sat-isfaction problem (see Figure 1). Due to this close relationship, any CSP algorithmcan be transformed into a SAT algorithm, and this can usually be done in a waythat maintains the e�ciency of the algorithm.A discrete CSP model consists of the following three components [206, 228]:� n variables: fx1, x2, : : : , xng. An assignment is a tuple of n values assignedto the n variables.� n domains: fD1, D2, : : : , Dng. Domain Di contains d possible values (alsocalled labels) that xi may be instantiated, i.e., Di = fli;1, li;2, : : : , li;dg.� A subset of D1 � D2 � : : : � Dn is a set of constraints. A set of order-lconstraints (l � n) imposed on a subset of variables fxi1; xi2 ; : : : ; xilg �fx1; x2; : : : ; xng is denoted asCi1;i2;::: ;il � Di1 �Di2 � : : :�Dil :An order-l constraint indicates the compatibility (i.e., consistency/inconsistencyor conicting measure) among l variables for a given variable assignment. Thevariables conict if their values do not satisfy the constraint. In practice, twofrequently used constraints are unary constraints imposed on a single variable (Ci �Di) and binary constraints imposed on a pair of variables (Ci;j � Di �Dj).Solving a CSP entails minimizing local inconsistency and �nding a consistentvalue assignment (i.e., a consistent labeling) to the variables subject to the givenconstraints.Constraint satisfaction problems are extremely common. Most NP-completeproblems are initially stated as constraint satisfaction problems. Indeed, the proof



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 3CSP 8>>>>>><>>>>>>: DiscreteCSP 8<: N -queen problemGraph coloring problemScheduling problemBinaryCSP � SAT problemMax-SAT problemFigure 1. Some examples of the constraint satisfaction problem(CSP). SAT problem a special case of CSP, i.e., a CSP with binaryvalues.that a problem is NP-complete implies an e�cient way to transform the probleminto a constraint satisfaction problem. For a few special forms of the constraintsatisfaction problem there exist algorithms that solve such formulas in polynomialworst-case time. When no polynomial-time algorithm is known for a particular formof constraint satisfaction problem, it is commonpractice to solve such formulas witha search algorithm.Problems that are commonly formulated as constraint satisfaction or satis�a-bility problems for the purposes of benchmarking include graph coloring and then-queens problems. In the case of the n-queens problem, although analytical solu-tions for this problem exist [2, 10, 30], they provide a restricted subset of solutions.In practical applications, one must use a search algorithm to �nd a general solutionto the CSP or SAT problems. 3. PreliminariesTo simplify our discussion, throughout this paper, let:� F be a CNF Boolean formula,� m be the number of clauses in F ,� n be the number of variables in F ,� Ci be the ith clause,� jCij be the number of literals in clause Ci,� Qi;j be the jth literal in the ith clause, and� l be the average number of literals: Pmi=1 jCijm ;where i = 1; :::;m and j = 1; :::; n.On Boolean space f0; 1gn, let:� F (x) be a function from f0; 1gn to integer N ,� xj be the jth variable,� x be a vector of n variables,� Ci(x) be the ith clause function, and� Qi;j(x) be the jth literal function of the ith clause function,where i = 1; :::;m and j = 1; :::; n.On real space En, let:� N (x) be a real function from f0; 1gn to E,� f(y) be a real function from En to E,� yj be the jth variable,� y be a vector of n variables,



4 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH� ci(y) be the ith clause function, and� qi;j(y) be the jth literal function of the ith clause function,where i = 1; :::;m and j = 1; :::; n.On real space En, also let:� wj be the jth integer variable, and� w be a vector of n integer variables,where i = 1; :::;m and j = 1; :::; n.Following [359], a real-valued function f de�ned on a subset of En is said tobe continuous at y if f(yk) ! f(y). A set of real-valued functions f1, f2, ..., fmon En form a vector function f = (f1; f2; :::; fm) whose ith component is fi. It iscontinuous if each of its component functions is continuous.If f has second partial derivatives which are continuous on this set, we de�nethe Hessian of f at y to be the n � n matrix denoted byH(y) = r2f(y) = �@2f(y)@yi@yj � :(3.1)We call y 2 En with f(y) = 0 a solution of f , denoted as y�.Two aspects of iterative optimization algorithms are their global convergenceand local convergence rates [359]. Global convergence concerns, starting from aninitial point, whether the sequence of points will converge to the �nal solutionpoint. Local convergence rate is the rate at which the generated sequence of pointsconverge to the solution.4. An Algorithm-Space Perspective of SAT AlgorithmsIn this section, we �rst describe various formulations of SAT, then give analgorithm-space perspective that provides some insights into developing e�cientalgorithms for solving SAT. Following this, we give a brief overview of the basicsequential and parallel SAT algorithms, and discuss various categories of algorithmsand performance evaluation methods.4.1. Formulations of SAT. SAT problem can be expressed by ConjunctiveNormal Form (CNF) formulas (e.g., (x1_x2)^(x1_�x2)) or Disjunctive Normal Form(DNF) formulas (e.g., (�x1 ^ �x2) _ (�x1 ^ x2)). Instances of SAT can be formulatedbased on discrete or continuous variables [538, 540].Discrete Formulations. These can be classi�ed as unconstrained versus con-strained.(a) Discrete Constrained Feasibility Formulations. The goal is to satisfy allconstraints. One possible formulation is the CNF formulas given by (1.1). A secondformulation is the DNF formulas [207] discussed in Section 7.10.(b) Discrete Unconstrained Formulations. A common formulation for CNFformulas exists [209, 212, 472]. The goal is to minimize N (x), the number ofunsatis�ed clauses, under the interpretation that numeric variable xi = 1 (xi = 0)if Boolean variable xi = true (xi = false), respectively. That is,minx2f0;1gnN (x) = mXi=1 Ci(x)(4.1)



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 5where Ci(x) = nYj=1Qi;j(xj)(4.2) Qi;j(xj) = 8<: 1� xj if xj in Cixj if �xj in Ci1 otherwise(4.3)In this case, N (x) = 0 when all the clauses are satis�ed.A similar formulation forDNF formulas exists (See Section 7.10, [235], [207], [213]).Under the interpretation that numeric variable xi = 1 (xi = 0) if Boolean variablexi = true (xi = false), respectively, the goal is to solveminx2f0;1gnF (x) = mXi=1 Ci(x);(4.4)where Ci(x) = 1� nYj=1Qi;j(xj)(4.5) Qi;j(xj) = 8<: xj if xj in Ci1� xj if �xj in Ci1 otherwise(4.6)All the clauses are satis�ed when F (x) = 0.Alternatively, DNF formulas can be solved as follows:maxx2f0;1gnF (x) = mXi=1 Ci(x);(4.7)where Ci(x) = nYj=1Qi;j(xj);(4.8)and Qi;j(xj) is given by (4.6).Usually, the question of falsi�ability for a DNF formula is more interesting thanthe question of satis�ability. This can be solved as follows:minx2f0;1gnF (x) = mXi=1 Ci(x);(4.9)where Ci(x) is given by (4.8). A formula is falsi�able if F (x) = 0 for some x.(c) Discrete Constrained Formulations. There are various forms of this formu-lation. One approach is to formulate SAT formulas as instances of the 0-1 integerlinear programming (ILP) problem.Another approach is to minimize the objective function N (x), the number ofunsatis�able clauses, subject to a set of constraints, as follows [538, 540]:minx2f0;1gn N (x) = mXi=1Ci(x)(4.10) subject to Ci(x) = 0 8i 2 f1; 2; : : : ;mg:A formulation based on DNF can be de�ned similarly.



6 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHThis formulation uses additional constraints to guide the search. The violatedconstraints provide another mechanism to bring the search out of a local minimum.This formulation is used in a Lagrange multiplier-based method to solve the SATproblem (see Section 8.7 and [538, 540]).Continuous Formulations. In formulating a discrete instance of SAT incontinuous space, we transform discrete variables in the original formula into con-tinuous variables in such a way that solutions to the continuous problem are binarysolutions to the original formula. Such a transformation is potentially bene�cialbecause an objective in continuous space may \smooth out" some infeasible solu-tions, leading to a smaller number of local minima explored. In the following, weshow two such formulations.(a) Continuous Unconstrained Formulations. There are many possible formu-lations in this category. A simple formulation, UniSAT (Universal SAT ProblemModels) [207, 209, 211, 210], suggests:miny2En f(y) = mXi=1 ci(y);(4.11)where ci(y) = nYj=1 qi;j(yj)(4.12) qi;j(yj) = 8<: jyj � T j if xj in Cijyj + F j if �xj in Ci1 otherwise(4.13)where T and F are positive constants.Two special formulations to (4.13) exist. In the UniSAT5 model [211, 213]qi;j(yj) = 8<: jyj � 1j if xj is in Cijyj + 1j if �xj is in Ci1 otherwise(4.14)and in the UniSAT7 model [211, 213]:qi;j(yj) = 8<: (yj � 1)2 if xj is in Ci(yj + 1)2 if �xj is in Ci1 otherwise(4.15)Values of y that make f(y) = 0 are solutions to the original formula in (1.1).UniSAT5 can be solved with e�cient, discrete, greedy local search algorithms (Sec-tion 8 and [213]). UniSAT7 requires computationally expensive continuous opti-mization algorithms, rendering them applicable to only small formulas (Section 8and [213, 218]).(b) Continuous Constrained Formulations. This generally involves a heuristicobjective function that measures the quality of the solution obtained (such as thenumber of clauses satis�ed). One formulation similar to (4.11) is as follows.miny2En f(y) = mXi=1 ci(y)(4.16) subject to ci(y) = 0 8i 2 f1; 2; : : :;mg
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Unconstrained

    Constrained

ContinuousDiscrete

       Parallel

       SequentialFigure 2. The algorithm space is a uni�ed framework for discretesearch algorithms and continuous optimization algorithms. Theoctants represent eight basic classes of algorithms.where ci(y) is de�ned in (4.12).The key in this approach lies in the transformation. When it does not smoothout local minima in the discrete space or when solution density is low, continuousmethods are much more computationally expensive to apply than discrete methods.Since (4.16) is a continuous constrained optimization problem with a nonlin-ear objective function and nonlinear constraints, we can apply existing Lagrange-multiplier methods to solve it. Our experience is that a Lagrangian transformationdoes not reduce the number of local minima, and continuous Lagrangian methodsare at least an order-of-magnitude more expensive to apply than the correspondingdiscrete algorithms [80].4.2. The Algorithm Space. Discrete search algorithms relate to continuousoptimization methods in operations research. Many discrete search problems canbe solved with numerical algorithms in the real space. A uni�ed framework forsearch and optimization would shed light on developing e�cient algorithms for asearch problem. Figure 2 shows a typical algorithm space that uni�es a variety ofsearch and optimization algorithms in terms of variable domain, constraint used,and parallelism in the algorithms [213].Satis�ability is expressed with discrete variables, but some algorithms do theircalculations with continuous variables. This leads to the discrete-continuous axis inthe space. Satis�ability has a set of constraints that must be satis�ed exactly, butsome procedures (e.g., local search) consider changes in variable values in clausesthat do not satisfy the constraints (typically, these algorithms assign some cost tonon-satisfying constraints and then look for the least-cost solution). This de�nesthe vertical axis in Figure 2 showing constraint characteristics in the algorithmspace. Most SAT algorithms are sequential, while some have been implemented
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Figure 3. A 2-dimensional cross section of the algorithm spacecut at the sequential side. It indicates a uni�ed framework for somediscrete search algorithms and continuous optimization techniquesfor solving SAT.in parallel. A third axis indicating parallelism in the algorithms is added in thealgorithm space. Following the three axes, the algorithm space is divided into eightoctants, representing the four sequential algorithm classes, i.e., discrete constrainedalgorithms, discrete unconstrained algorithms, continuous constrained algorithms,and continuous unconstrained algorithms, and four parallel algorithm classes, i.e.,parallel discrete constrained algorithms, parallel discrete unconstrained algorithms,parallel continuous constrained algorithms, and parallel continuous unconstrainedalgorithms.Figure 3 gives some typical examples for the four sequential classes of SATalgorithms in the space In the discrete search space (left half of Figure 3), vari-ables, values, constraints, and the objective functions are de�ned with discretevalues. If one handles a discrete search problem with consistency checking or con-straint resolution, the approach belongs to the class of discrete constrained meth-ods [228, 361, 384, 542]. Alternatively, one can formulate the constraints intoan objective function and minimize the objective function without looking at anyproblem constraints. Algorithms in this category are usually called the discrete,unconstrained methods such as local search procedure. [209, 212, 403, 487, 491].In the continuous search space (right half of Figure 3), variables, values, con-straints, and objective functions are de�ned quantitatively with real values. If onesolves a continuous optimization problem with explicit constraints, one uses contin-uous constrained methods, such as constrained minimization, primal methods, andcutting plane methods [359]. If the problem constraints are incorporated into anobjective function, then the problem is transformed into an unconstrained one. Thelatter can be solved by the continuous unconstrained methods, such as the descentmethods, conjugate direction methods, and Newton methods [213, 214, 359].
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Unconstrained

    Constrained

ContinuousDiscrete

       Complete

       IncomplateFigure 4. An algorithm space incorporating algorithm complete-ness for solving SAT. Each octant represents one class of SAT al-gorithms.From an operations research point of view, most discrete search algorithmshave continuous optimization versions, and most constrained search methods haveunconstrained counterparts. For instance, discrete consistency algorithms are con-strained algorithms. If we formulate the amount of \inconsistency" into an objec-tive function, a local search method can often be used to solve an input e�ciently.Furthermore, local search works in discrete search space. By extending a searchproblem into a real search space, constrained and unconstrained global optimizationalgorithms can be developed to solve SAT [35, 214, 213, 258, 285, 284].The algorithm space provides a uni�ed and global perspective on the develop-ment of search and optimization algorithms for solving SAT. In general, for a giveninstance of a search problem if one can �nd an algorithm in one octant, then onecould possibly �nd some closely related algorithms in other octants. In the left twoquadrants in Figure 3, for example, once we had consistency algorithms and localsearch algorithms for solving SAT, it would be natural to think about unconstrainedoptimization algorithms for solving SAT in the right two quadrants | somethingmust be put there to meet the natural symmetry. This was the original incentiveto develop unconstrained optimization algorithms for solving SAT [213].There are other ways of looking at a variety of SAT algorithms. A di�erentalgorithm space for SAT that incorporates algorithm completeness was given in[213] (see Figure 4).4.3. Basic SAT AlgorithmClasses. Following the algorithm space, a num-ber of major SAT algorithm classes can be identi�ed. They are given in Figure 5in chronological order. Most existing SAT algorithms can be grouped into thesecategories.� Discrete, constrained algorithms. Algorithms in this category treat a SATformula as an instance of a constrained decision problem, applying discrete



10 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Discrete

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Constrained 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

1960: Davis-Putnam (DP) algorithm [118]1965: Resolution [449]1971: Consistency algorithms [95, 206, 271, 541]1978: Loveland's Davis-Putnam (DPL) [117, 357]1986: Parallel consistency chips [206, 226, 227]1986: Binary decision diagrams (BDD) [17, 59]1988: Chip and conquer [192]1990: DPL plus heuristic (DPLH) [284]1989: Local search & backtracking [212]1993: Backtracking and probing [433]1994: Parallel DP algorithm [38]1994: Matrix inequality system [512]1996: CSAT [151]Unconstrained 8>>>>>>>>>><>>>>>>>>>>: 1987: Randomized Local search (SAT1) [207, 212]1987: Parallel local search (SAT1.6) [207, 212]1988: Local search for n-queen [206, 484, 485]1990: Unison algorithm and hardware [492, 493]1991: Local search complexity [221, 403]1991: Local search for 2-SAT [402]1992: Local search with traps (SAT1.5) [209, 212]1992: Greedy local search { GSAT [472]Continuous 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>: Constrained 8>>>><>>>>: 1986: Branch-and-bound (APEX) [35]1988: Programming models [35, 285]1988: Cutting plane [259, 257]1989: Branch-and-cut [260]1989: Interior point method [303, 301]Unconstrained 8>>>><>>>>: 1987: UniSAT models [207, 211, 213]1987: Global optimization (SAT6) [207, 213]1989: Neural net models [291, 75]1990: Global optimization & backtracking [213]1991: SAT14 algorithms [213]Figure 5. Some typical algorithms for the SAT problem.search and inference procedures to determine a solution. One straightfor-ward way to solve an instance of SAT is to enumerate all possible truthassignments and check to see if one satis�es the formula. Many improvedtechniques, such as consistency algorithms [228, 361], backtracking algo-rithms [34, 53, 64, 328, 425], term-rewriting [130, 268], production sys-tem [482], multi-valued logic [478], Binary Decision Diagrams [59, 17], chipand conquer [192], resolution and regular resolution [195, 357, 397, 449,514, 525, 549], independent set algorithm [281], and matrix inequalitysystem [512], have been proposed.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 11Many of the discrete constrained algorithms eliminate one variable at atime. This can be done either by making repeated use of resolution, as wasdone in the original version of the Davis-Putnam (DP) procedure [118], orby assigning some variable each possible value and generating a sub-formulafor each value, as was done in Loveland's modi�cation to the DP procedure[117, 357]. Resolution generates only one new formula, but in the worstcase the number of clauses in that new formula will be proportional to thesquare of the number of clauses in the original formula. Assigning values toa variable (often called searching) generates two new formulas. For randomformulas, resolution methods are fast when the number of clauses is smallcompared to the number of values [166, 86], while search methods are fastexcept when the number of clauses is such that the expected number ofsolutions is near one [433]. The two approaches can be combined, usingresolution on some variables and search on others.Other speci�c algorithms using these principles include simpli�ed DPalgorithms [181, 203, 430], and a simpli�ed DP algorithm with strict or-dering of variables [269]. The DP algorithm improved in certain aspectsover Gilmore's proof method [197]. Analyses of SAT algorithms often con-centrates on algorithms that are simple because it is di�cult to do a correctanalysis of the best algorithms. Under those conditions where simple algo-rithms are fast, related practical algorithms are also fast. (It is di�cult totell whether a practical algorithm is slow under conditions that make thecorresponding simpli�ed algorithm slow.)A number of special SAT problems, such as 2-satis�ability and Hornclauses, are solvable in polynomial time [5, 101, 397]. There are severallinear time algorithms [18, 155] and polynomial time algorithms [402, 462]existing.� Discrete, unconstrained algorithms. In this approach, the number of unsatis-�able CNF (or satis�able DNF) clauses is formulated as the value of the ob-jective function, transforming the SAT formula into a discrete, unconstrainedminimization problem to the objective function. Local search is a major classof discrete, unconstrained search methods [209, 212, 228, 221, 403, 472].It can be used to solve the transformed formula (see Section 7).� Constrained programming algorithms. Methods in this class were developedbased on the fact thatCNF orDNF formulas can be transformed to instancesof Integer Programming, and possibly solved using Linear Programming re-laxations [35, 258, 259, 285, 303, 301, 401, 548]. Many approaches,including branch-and-bound [35], cutting-plane [259, 257], branch-and-cut[260], interior-point [303, 301], and improved interior-point [479], havebeen proposed to solve the integer program representing the inference prob-lem. Researchers found integer programmingmethods faster than resolutionfor certain classes of problems, although these methods do not possess arobust convergence property and often fail to solve hard instances of satis-�ability [35, 258, 259, 285, 303, 301].� Unconstrained, global optimization algorithms. Special models have beenformulated to transform a discrete formula on Boolean space f0; 1gn (a de-cision problem) into an unconstrained UniSAT problem on real space En (anunconstrained global optimization problem). The transformed formulas can



12 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Discrete 8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>: Constrained 8>>>>>>>>>><>>>>>>>>>>: 1983: Parallel CLP algorithms [517, 372]1986: Parallel DRA chips [206, 226, 227]1987: Parallel DP algorithm [87]1988: Parallel AC algorithms [461]1988: Parallel CSP architectures [206, 227]1990: Unison algorithm and hardware [492, 493]1992: Vectorized DP algorithm [157]1994: MIMD DP algorithm [38]Unconstrained 8>>>><>>>>: 1987: CNF local search [207, 212]1987: DNF local search [207, 213]1987: Parallel local search [207, 212]1991: Discrete �� relaxation [208]1993: Multiprocessor local search [490, 489]Continuous 8>>>>>>>>>><>>>>>>>>>>: Constrained � 1989: Interior point method [303, 301]Unconstrained 8>>>>>><>>>>>>: 1987: UniSAT models [207, 213]1987: Global optimization (SAT6) [207, 213]1991: Continuous �� relaxation [208]1991: SAT14 algorithms [213]1991: Parallel global optimization [211, 213]1992: Neurocomputing [215]Figure 6. Some parallel SAT/CSP algorithms.be solved by many existing global optimization methods [207, 209, 211,213, 228] (see Section 8).4.4. Parallel SATAlgorithms. In practice, most sequential SAT algorithmscan be mapped onto parallel computer systems, resulting in parallel SAT algorithms[215]. A speedup greater than the number of processors sometimes occurs becauseof correlations among variable settings that lead to solutions [386, 340]. Accord-ingly, as given in Figure 6, there are four classes of parallel algorithms for solvingSAT.� Parallel, discrete, constrained algorithms. Many discrete, constrained SATand CSP algorithms have been implemented in parallel algorithms or put onspecial-purpose, hardware VLSI architectures. These include parallel con-sistent labeling algorithms [517, 372], parallel discrete relaxation (DRA)chips [226, 206, 227], parallel arc consistency (PAC) algorithms [461],parallel constrained search architectures [206, 227], parallel Unison algo-rithms [492], parallel Unison architectures [493], parallel DP algorithms[38, 87, 157], and parallel logical programming languages [99, 353, 532,533, 534].� Parallel, discrete, unconstrained algorithms. A number of discrete local op-timization algorithms were implemented on parallel computing machines.These include CNF local search [207, 212], DNF local search [207, 213],parallel local search [207, 212], and multiprocessor local search [490, 489].



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 138>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
General-PurposeProgramming 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: SequentialMachines � VAX-8600SUN workstationsParallelMachines 8>>>>>>>><>>>>>>>>: 1983: Multicomputers [517, 372]1987: CRAY [460]1988: BBN buttery plus [459]1988: Connection machine [103]1989: KORBX vector computer [303, 301]1992: ETA10Q Vector computer [157]1994: INMOS Transputer [38]Special-PurposeArchitectures 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: SequentialMachines � 1980: Analog processor [374]1986: DRA1 architectures [319, 226]ParallelMachines 8>>>>>>>><>>>>>>>>: 1986: DRA architectures [206, 226, 227]1986: mDRA architectures1987: CSP architectures [206]1987: mCSP architectures [206]1988: DRA model architecture [103]1989: DRA model architecture [352]1990: Unison architectures [492, 493]Figure 7. Computer architectures used for running SAT/CSP algorithms.A new �� relaxation technique was developed in a parallel and distributedenvironment [208].� Parallel, constrained programming algorithms. Kamath et al. implementedan interior point zero-one integer programming algorithm on a KORBX(R)parallel/vector computer [303, 301].� Parallel, unconstrained, global optimization algorithms. Several of thesealgorithms have been implemented: UniSAT models [207, 213], parallel,continuous �� relaxation [208], and parallel global optimization algorithms[211, 213].Computer architectures a�ect the data structures, implementation details, andthus the performance of SAT algorithms. A variety of computer systems havebeen used for running SAT algorithms (Figure 7). Most early studies of CSP/SATalgorithms were performed on sequential computers. Recent work has been concen-trated on parallel programming on multiprocessors. McCall et al. [372, 517] sim-ulated an 8-processor architecture with various system, topology and performancecriteria for the forward checking CSP algorithm. Samal implemented several paral-lel AC algorithms on a CRAY computer [460] and an 18-node BBN Buttery PlusMIMD, shared-memory, homogeneous parallel processor [459]. Cooper and Swainimplemented parallel AC algorithms on a Connection Machine [103]. Kamath andKarmarkar et al. implemented an interior point zero-one integer programming al-gorithm for SAT on a KORBX(R) parallel/vector computer [303, 301]. Recently,Fang and Chen implemented a vectorized DP algorithm on an ETA10Q vector com-puter [157]. Speckenmeyer and B�ohm have experimented with the parallelization



14 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHof variants of the Davis-Putnam-Loveland (DPL) procedure on a message basedMIMD Transputer system built with 320 (INMOS T800/4MB) processors [38].In their implementation, for some small k, each of 2k processors solves a formulaarising at depth k of a DPL search tree, and computation ceases as soon as oneprocessor reports that its formula is satis�able. Speckenmeyer noticed that thetime to completion was usually less than N=2k where N is the time taken by theserial version [38].Research works continue by building special-purpose VLSI architectures tospeed up SAT/CSP computations. For an n-variable and m-value instance of CSP,Wang and Gu [543, 544] gave an O(n2d2) time parallel DRA2 algorithm andan SIMD DRA2 architecture. Furthermore, Gu and Wang [226] gave an O(n2d)time parallel DRA3 algorithm and a dynamic DRA3 architecture for solving gen-eral DRA problems. Later, Gu and Wang [206, 227] developed an O(nd) time,massively parallel DRA5 algorithm and a parallel DRA5 VLSI architecture. Forproblems of practical interest, parallel DRA algorithms running on special-purposeVLSI architectures o�er many orders of magnitude in performance improvementover sequential algorithms.Recently, Sosi�c, Gu, and Johnson have developed a number of parallel algo-rithms and architectures for di�erential, non-clausal inference of SAT formulas[492, 493].An extreme example of parallel processing is to compute using chemistry withDNA molecules. This would appear to lead a factor of about 1023 degrees ofparallelismwith a slow down of perhaps 1010 in the time for computation steps, butthis approach has not been investigated in enough detail to determine its practicallimitations [3, 355]. This SAT evaluation approach is both parallel and random| if it says you have a solution then de�nitely you do, if it says you do not thenprobably you do not.4.5. Algorithm Categories. Some SAT algorithms are complete (they def-initely determine whether an input has a solution or does not have one) [59,118, 117, 357, 449], while others are incomplete (they sometimes determinewhether or not the input has a solution, but in other cases they cannot �nd one)[212, 213, 301, 402].Most incomplete algorithms �nd one solution (or perhaps several solutions) infavorable cases, but give up or do not terminate in other cases. In such cases onedoes not know whether the input has no solution or the algorithm did not searchhard enough. Some incomplete algorithms can verify that a formula has no solutionbut can not �nd one if at least one solution exists. Such is the case for incompletealgorithms that check for patterns that imply unsatis�ability. In the strict senseof the word algorithm, incomplete algorithms are not algorithms at all, but suchprocedures are of particular interest for inputs that are so di�cult that a completealgorithm cannot solve them in reasonable time.Complete algorithms can perform one of the following actions: (1) determinewhether or not a solution exists, (2) give the variable settings for one solution,(3) �nd all solutions or an optimal solution, (4) prove that there is no solution.Algorithms of the �rst type would be of theoretical interest only were it not for thefact that any such algorithm can be modi�ed, with little loss of e�ciency, to givean algorithm of the second type. Algorithms of the third type are needed whenthere is some measure of the solution quality, and the optimal solution is sought or



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 15when the overall problem has constraints in addition to those of the SAT instance.The algorithms are essential to many important practical applications that areNP-hard in nature. Recently, Major et. al. used SAT to precede a program tocalculate chemical interaction energies to predict RNA folding [362]. Gu and Purideveloped an e�cient complete SAT algorithm for asynchronous computer circuitdesign, aiming at producing the minimal circuit structure [216, 438]. Incompletealgorithms cannot optimize solution quality, playing little role in solving practicaloptimization problems.Requiring a program to produce each solution in explicit form ensures thatthe worst-case time will be exponential whether or not P = NP (because someinputs have an exponential number of solutions). An alternative is to give thesolutions in some compressed form. For example, some algorithms implicitly listall solutions by giving cylinders of solutions, i.e., the settings of some variableswith the understanding that the remaining variables are don't cares which can haveany value. For some formulas, using this approach to represent all solutions ismuch more compact than an explicit representation [64, 376]. Binary DecisionDiagrams (BDD) are a more sophisticated and compact way to represent the set ofall solutions [59, 17]. Some instances of SAT, however, have a structure such thatit is faster to generate the solution to various subsets of the constraints (dependingon a subset of the variables) and then test whether those various solution sets haveanything in common rather than try to solve the entire formula at once. Thistype of SAT algorithm shows greater e�ciency improvements for certain practicalengineering design problems [439].The techniques used in complete SAT algorithms can usually be adapted toprovide exact solutions to optimization problems. The techniques used in incom-plete SAT algorithms can usually be adapted to provide approximate solutions tooptimizations problems. They normally lead to algorithms that produce low (butnot necessarily the lowest) value of the function.For random sets of formulas, the probability that a particular formula has atleast one solution is perhaps the most important parameter for determining howdi�cult the set will be for a particular algorithm. The best known algorithms havedi�culty when the probability is near 0.5, but are fast when the probability is closeto 0 or 1. We use formulas generated from the 3-SAT model as an example. Figure8 shows, for 50 variables, the real execution results of the DP algorithm for 100 to500 clauses. The computing time used by a program for the DP algorithm ([118,117, 357]) is shown for the 3-SAT model (solid line) and the average 3-SAT model(dotted line) [207, 212, 383, 109]. Random formulas generated in the left regionare usually satis�able, and the procedure is fast. Random formulas in the rightregion are usually unsatis�able, and the procedure is fast. For random formulas inthe middle, many are satis�able and many are unsatis�able; the procedure is slow.Because the DP algorithm is a complete algorithm, it is able to verify satis�abilityand unsatis�ability. So it gives results for random formulas in all three regions.The results of the DP algorithm may not hold for a di�erent SAT algorithm.A local search may often �nd a solution for a satis�able CNF much more quicklythan the DP algorithm but does not always verify satis�ability and cannot proveunsatis�ability. In particular, it gives no answer if a CNF formula is not satis�able.Thus, for most formulas in the peak region and nearly all formulas in the rightregion, a local search algorithm will not terminate in a reasonable amount of time.
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Figure 8. Computing time for the exact and the average 3-SATmodels (with 50 variables) on a SUN SPARC 1 workstation. Thehorizontal axis is measured by m or m=n.4.6. Performance Evaluation. The performance of an algorithm can be de-termined experimentally or analytically. It is feasible to do experimental studieswith typical or random formulas, but not with worst-case formulas (there are toomany formulas of a given size to experimentally determine which one leads to theworst-case time). It is feasible to do analytical studies with random or worst-caseformulas but not with typical formulas (typical sets of formulas seldom have amathematical structure suitable for analysis).Experimental studies are sometimes inconclusive because they consider a rela-tively small number of input possibilities. Such restrictions are often forced becausethe space of likely input formulas, and even the size of such formulas, is so large.Analytical studies are intended to determine performance over broad families of in-puts where each family typically represents a class of formulas of a particular size.However, such studies have the drawback that only the simplest of algorithms canbe analyzed. To compensate for this, several features of a complex algorithm canbe removed, leaving a rather simple, more analyzable one. The simpli�ed algorithmusually contains one or two simple techniques, such as the unit-clause-rule, or thepure-literal-rule. An analytical result on the simpli�ed algorithm provides a boundon the performance of the complex algorithm, and this bound is sometimes su�-cient to understand the behavior of the complex algorithm. Such an approach hasthe following side bene�t: analytical studies can suggest which simple techniquesshould be included in practical algorithms. In fact, most of the 6 prize winners ofthe 1991 SAT contest were associated with analytical studies of SAT algorithms[69, 70]. The two top winners were associated with both experimental and analyt-ical studies of SAT algorithms. The analytical studies of SAT algorithms involvethe following.1. Worst-Case Studies.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 17Unless P = NP, all SAT algorithms have a worst-case time that is superpoly-nomial in the input size [101]. A number of studies have concentrated on theworst-case analysis of variable setting algorithms for solving SAT [192, 385, 320].2. Probabilistic Studies.Since the typical performance of many satis�ability algorithms is much betterthan any proven worst-case results, there is considerable interest in evaluating theprobabilistic performance of these algorithms. Such studies use some model forgenerating random formulas and then calculate the performance of algorithms onthese formulas. The two most widely used measures of performance are averagetime and probabilistic time.Average time is a weighted average of the time (or some related measure, suchas the number of nodes) to solve a given sample of formulas. An algorithm mustsolve each formula for the average to be de�ned. In probabilistic time studies, analgorithm is given a deadline (usually speci�ed as a polynomial in the length ofinput formulas), and one studies the fraction of formulas that are solved withinthe deadline. Probabilistic time studies can be performed on algorithms which giveup on some fraction of the formulas so long as that fraction is less than the goalfraction.For incomplete algorithms, the average time is not de�ned so only the fractionof inputs solved can be studied. One can also use various hybrid measures, such asthe average time used to solve the easiest 90 percent of the inputs.The literature contains a number of studies of the average time and probabilistictime performance of certain SAT algorithms [53, 168, 417, 167, 201, 202, 203,269, 424, 432, 427]. Despite the worst-case complexity of SAT, algorithms andheuristics with polynomial average time complexities have been reported [82, 83,165, 425, 429, 430, 431, 552]. This subject is treated in more detail in Section 12.3. Number of Solutions.Some researchers investigated the number of solutions of random SAT formulas.Extending Iwama's work [281] Dubois gave a combinatorial formula computing thenumber of solutions of any set of clauses [148]. Dubois and Carlier also studiedthe mathematical expectation of the number of solutions for a probabilistic model[149].During the past two decades, many performance studies were performed throughsampling techniques [313, 424, 501],1 experimental simulations [54, 191, 241],analytical studies [53, 176, 177, 432, 425, 429, 500], as well as the combinede�ort of the above approaches [191, 266, 313, 424, 500].5. SAT Input ModelsIn this section, we describe several basic SAT input models and their charac-teristics.1Knuth [313] �rst showed how to measure the size of a backtrack tree by repeatedly followingrandom paths from the root. Purdom [424] gave a modi�ed version of Knuth's algorithm whichgreatly increases the e�ciency of Knuth's method by occasionally following more than one pathfrom a node. Stone and Stone [501] presented a variant of the algorithms of Knuth and Purdomfor estimating the size of the unvisited portion from the statistics of the visited portion.



18 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH5.1. Random InputModels. The running time of a SAT algorithm dependson the type of input being solved. The following SAT input models are often usedto generate a variety of input types.� Hardest formulas. Generate that formula that is the most di�cult for thealgorithmbeing measured. This approach is often used for analytical studies.There are too many possible formulas to use this approach in experimentalstudies. Bugrara and Brown [65] reported the e�ects these minor variationshave on the average time needed by the simple backtracking algorithm.Experimental studies sometimes include results for the hardest formulasfrom the set of formulas tested, but such results are quite di�erent fromwhatthe results would be if the entire set of possible formulas had been tested.Most analytical studies use the following two basic models to generate randomCNF formulas. Each model has several variations depending on whether identicalclauses are permitted, whether a variable and its negation can occur in a clause,etc. � The l-SAT model. In the l-SAT model, a randomly generated CNF for-mula consists of m independently generated random clauses. Each clauseis chosen uniformly from the set of all possible clauses of exactly l literalsthat can be composed from a variable set X = fx1; : : : ; xng such that notwo literals are equal or complementary. The number of possible clauses is2ln()l. This model is sometimes called the �xed-clause-length model. Similarmodels were used in [53, 82, 83, 168, 417, 212, 213, 383, 376, 429].� The average l-SAT model. In the average l-SAT model, a randomly gen-erated CNF formula consists of m independently generated random clauses.In each clause, each of n variables occurs positively with probability p(1�p),negatively with probability p(1 � p), both positively and negatively withprobability p2, not at all with probability (1�p)2, where p can be a functionofm and n. The average number of literals in a clause is l = 2pn. This modelis also called the random-clause-length model. This model and variationswere used in [165, 166, 203, 209, 212, 213, 259, 260, 303, 301, 479].Most papers use just one model, but the performance of simple backtrackinghas been considered under a number of related models [65].5.2. Hardness. Various SAT algorithms di�er greatly in the amount of timethey need to solve particular inputs. For example, Iwama's algorithm [281] is fastfor random formulas with lots of solutions and slow for random formulas with fewsolutions, while simple backtracking [431] is fast on formulas with few solutions andslow on formulas with many solutions. Therefore, the hard-and-easy distributionsof SAT formulas depend not only on the inherent property of the SAT input modelsbut also on the algorithms used to solve the formulas. Any particular SAT formulais easy for some algorithm (for example a table lookup algorithm with that formulain its lookup table). Thus, hardness is a property of large sets of formulas ratherthan individual formulas.For sets of formulas generated by random models with parameters, the proba-bility of �nding a solution varies with the parameter settings. Those sets generatedwith parameters set in regions where solutions are going from unlikely to commonare particularly di�cult for all algorithms that have been studied (see Figure 9).
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Figure 9. Percentage of satis�ability for formulas with 50 vari-ables generated by the 3-SAT and the average 3-SAT input models,respectively. The horizontal axis is measured by m or m=n.For random l-SAT formulas fewer literals and larger number of clauses reducethe possibility of making all clauses jointly satis�able. Therefore the computingtime for random l-SAT formulas increases, up to a point, when m=n increases orthe number of literals l (l > 3) in each clause decreases (Figure 8). Inspection ofFigure 8 reveals a \hump" of di�culty for l-SAT formulas where 50% of the samplespace is satis�able, but a \at" increase in di�culty for random l-SAT formulas ina correspondingly similar region of the parameter space.5.3. Comparison of Random Input Models. The structural propertiesof random formulas generated by the two input models given above can be quitedi�erent and this can have a signi�cant impact on the performance of a completeSAT algorithm. This signi�cance is felt especially in the region of the parameterspace for which random formulas are nearly equally likely to be satis�able or unsat-is�able. Figure 8 shows, for 50 variables, the actual computing time of a completeSAT (SAT14:11) algorithm2 for random formulas generated from the 3-SAT modeland the average 3-SAT model [207, 212, 214, 213]. Figure 9 shows the percentof random formulas that are satis�able as a function of formula size for both mod-els. For a complete algorithm, the problem instances generated from the average3-SAT model is much easier than those generated from the 3-SAT model. It takesa complete algorithm much less computing time to solve formulas generated fromthe average 3-SAT model.For an incomplete algorithm such as local search, however, the situation is dif-ferent. In Figure 9, for the same number of clauses (i.e., the same m=n values),problem instances generated from the average 3-SAT model have much lower per-centage of satis�ability (compared to those generated from the 3-SAT model). Thesat-and-unsat boundary of the average 3-SAT model is shifted to the left and is2SAT14:11 is a backtracking algorithm combined with coordinate descent in the realspace [213].
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Figure 10. Percentage of satis�ability for two average 3-SATproblem models with jCjmin = 1 and jCjmin = 2 (50 variables),respectively. Problem instances generated with smaller length ofthe shortest clauses have much lower percentage of satis�ability.drawn by smaller m=n values than those for the 3-SAT problem model. For thesamem=n values, more problem instances generated from the average 3-SAT modelare unsatis�able, making it harder for a local search algorithm to handle the av-erage 3-SAT problem model. Experimental results con�rmed that it took a localsearch algorithm (SAT1 for example) much longer time to solve problem instancesgenerated from the average l-SAT models [209].Many factors can a�ect the property of the random models signi�cantly. Forthe same average 3-SAT problem model even a slight variation to the length ofthe shortest clause in a CNF formula would signi�cantly shift the sat-and-unsatboundary. In Figure 10, the solid curve was generated from an average 3-SATmodel. The length of the shortest clause in the model was 1. The dotted curve wasgenerated from the same average 3-SAT model but the length of the shortest clausewas set to 2. Clearly, shorter clauses enforce tighter constraints and generate muchharder random instances for the same model.Incomplete algorithms that fail on unsatis�able inputs can be e�ective only inthe half-planes m=n < 2l=l for the l-SAT model and pn > ln(m) for the averagel-SAT model, where the probability that a random formula is satis�able is high (seeSection 12). Incomplete algorithms that fail on satis�able inputs can be e�ectiveonly in regions complementary to those above.Experience with the best complete algorithms has caused some to conclude thefollowing:1. Average l-SAT formulas are easy for the best algorithms;2. l-SAT formulas are di�cult even for the best algorithms; and3. Formulas generated by both models are of similar di�culty when the averageclause length is large.Obviously, there are some conicts in these beliefs.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 215.4. Practical InputModels. Random input models such as those discussedabove are suitable for analytical studies of SAT algorithms because they generateformulas which possess a symmetry that can be exploited for analysis. Actualformulas often have a di�erent structure. Therefore, structured problem instancesand practical SAT applications are essential to evaluate the performance of SATalgorithms. Examples of these are the following:� Regular SAT models. Models derived from problems such as graph col-oring and n-queens, are used to assess the performance of SAT algorithms[211, 213].� Practical applications problems. Models derived from practical appli-cation domains, such as integrated circuit design, mobile communications,computer architecture and network design, computer-aided manufacturing,and real-time scheduling, have a variety of special characteristics (see Section14).Some experiments strongly suggest that there is little correlation between theperformance of a SAT algorithm tested through random input models and the per-formance of the same algorithm tested through practical input models. Local searchis faster for some random inputs but can be slower than a complete SAT algorithmfor problems raised from practical applications. The boundary phenomenon dis-cussed in random models is an artifact of some probabilistic models. It has not yetbeen observed in practical input models.Practical applications are ultimately the most important, although it is di�cultfor people outside the area of application to understand how important or di�culta particular application problem is. It is also di�cult to develop a general theoryon the speed of SAT algorithms on applications. Much research is, therefore, doneon the more regular source of problems in the hope of better understanding thespeed that SAT algorithms will have when applied to a wide range of practicalapplications. 6. Splitting and ResolutionRecursive replacement of a formula by one or more other formulas, the solutionof which implies the solution of the original formula, is an e�ective paradigm forsolving CNF formulas. Recursion continues until one or more primitive formulashave been generated and solved to determine the satis�ability of the original. Oneway to achieve this is through splitting.In splitting, a variable v is selected from a formula, and the formula is replacedby one sub-formula for each of two possible truth assignments to v. Each sub-formula has all the clauses of the original except those satis�ed by the assignmentto v and otherwise all the literals of the original formula except those falsi�ed bythe assignment. Neither sub-formula contains v, and the original formula has asatisfying truth assignment if and only if either sub-formula has one. Splittinginsures that a search for a solution terminates with a result.Another e�ective paradigm is based on resolution [449]. In resolution, a vari-able v is selected and a resolvent (see below) obtained using v is added to theoriginal formula. The process is repeated to exhaustion or until an empty clause isgenerated. The original formula is not satis�able if and only if an empty clause is aresolvent. Although there is only one new formula on each step, the total numberof steps (or resolvents) can be extremely large compared to the number of clauses



22 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHin the original formula. Many algorithms that use resolution form all possible re-solvents using a particular variable at one time. When this is done, the originalclauses that contain the variable and its negation may be dropped. An algorithmmay use both splitting and resolution.Early examples of these approaches are the two forms of the Davis Putnamprocedure. The original DP procedure used resolution [118] while the revisedversion, i.e., the Davis-Putnam-Loveland (DPL) procedure, used splitting [117,357]. Combining splitting with depth-�rst search in the DPL procedure avoidsmemory explosion that occurs on many inputs when they are solved by the originalDP procedure.Most recursive SAT algorithms use the following primitive conditions to stopthe recursion:1. formulas with an empty clause have no solution.2. formulas with no clauses have a solution.3. formulas with no variables (i.e., all variables have been assigned values) aretrivial.The following subsections present various SAT algorithms, organized by thebasic approach that each algorithm takes. Some of these algorithms are muchsimpler than you would want to use in practice but are of interest because it hasbeen possible to analyze their running time for random formulas.6.1. Resolution. Given two clauses C1 = (v _ x1 _ ::: _ xl1) and C2 = (�v _y1 _ ::: _ yl2 ), where all xi and yj are distinct, the resolvent of C1 and C2 is theclause (x1 _ :::_xl1 _ y1 _ :::_ yl2 ), that is, the disjunction of C1 and C2 without vor �v. The resolvent is a logical consequence of the logical and of the pair of clauses.Resolution is the process of repeatedly generating resolvents from original clausesand previously generated resolvents until either the null clause is derived or until nomore resolvents can be created [449]. In the former case (a refutation) the formulais unsatis�able and in the latter case it is satis�able.For some formulas the order in which clauses are resolved can have a big e�ecton how much e�ort is needed to solve it. The worst-case associated with the bestpossible order (the order is selected after the formula is given) has received con-siderable study [181, 514, 232, 522]. These studies all used formulas that haveno solution, but where this is not obvious to the resolution algorithm. Eventuallya much stronger result was shown: nearly all random l-SAT formulas need expo-nential time when the ratio of clauses to variables is above a constant (whose valuedepends on l) [86]. The constant is such that nearly all of the formulas in this sethave no solution.A number of restrictions and at least one extension to resolution have beenproposed and applied to CNF formulas. Restrictions aim to shorten the amount oftime needed to compute a resolution derivation by limiting the number of possibleresolvents to choose from at each resolution step. The extension aims to provideshorter derivations than possible for resolution alone by adding equivalences whicho�er more clauses on which to resolve. A nice treatment of these re�nements canbe found in [63], Chapter 4. We mention here a few of these.Set of Support [551]. Split a given formula into two sets of clauses F1 andFs such that F1 is satis�able. Permit only resolutions involving one clause eitherin Fs or an appropriate previous resolvent. Set Fs is called the support set. This



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 23restriction can be useful if a large portion of the given formula is easily determinedto be satis�able.P- and N-Resolution. If one of the two clauses being resolved has all positiveliterals (resp. negative literals), then the resolution step can be called a P-resolution(resp. N-resolution) step. In P-resolution (resp. N-resolution) only P-resolution(resp. N-resolution) steps are used. Clearly there is great potential gain in thisrestriction due to the usually low number of possible resolvents to consider at eachstep. However, it has been shown that some formulas solved in polynomial timewith general resolution require exponential time with N-resolution.Linear Resolution. We have linear resolution if every resolution step exceptthe �rst involves the most recently generated resolvent (the other clause can be aprevious resolvent or a clause in the given formula). Depending on the choice ofinitial clause and previous resolvents it is possible not to complete a refutation.Regular Resolution[514]. In every path of a resolution tree no variable iseliminated more than once.Davis-Putnam Resolution. Once all the resolvents with respect to a partic-ular variable have been formed, the clauses of the original formula containing thatvariable can be dropped. Doing this does not change the satis�ability of the givenformula, but it does change the set of solutions to the extent that the value of thatvariable is no longer relevant. When dropping clauses, it is natural to �rst form allthe resolvents for one variable, then all the resolvents for a second variable, and soon. When doing resolution in this way, it is easy to �nd one satisfying assignmentif the formula is satis�able. At the next to last step the formula has just one vari-able, so each value can be tested to see which one satis�es the formula (perhapsboth will). Pick a satisfying value and plug it into the formula for the next step,converting it into a one variable formula. Solve that formula and proceed in thismanner until an assignment for all variables is found.Extended Resolution [514]. For any pair of variables a, b in a given formulaF , create a variable z not in F and append the following expression to F : (z_a)^(z _ b) ^ (�z _ �a _ �b). Judicious use of such extensions can result in polynomial sizerefutations for problems that have no polynomial size refutations without extension.The following strategies help reduce the time to compute a resolution derivation.Subsumption. If the literals in one clause are a subset of those in anotherclause, then the smaller clause is said to subsume the larger one. Any assignmentof values to variables that satis�es the smaller clause also satis�es the larger one, sothe larger one can be dropped without changing the set of solutions. Subsumptionis of particular importance in resolution algorithms because resolution tends toproduce large clauses.



24 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHPure Literals. A literal is pure if all its occurrences are either all positiveor all negative. No resolvents can be generated by resolving on a pure literal, butall clauses containing a pure literal can be removed without loss. An importantimprovement to the basic resolution algorithm is to �rst remove clauses containingpure literals (before resolving on non-pure literals) [118].Although resolution can be applied to SAT, the main reason for interest inresolution is that it can be applied to the more di�cult problem of solving sentencesof �rst order predicate logic. There is a vast literature on that subject. Bibel hasa good book on the topic [32].6.2. Backtracking. Backtracking algorithms are based on splitting. Duringeach iteration, the procedure selects a variable and generates two sub-formulasby assigning the two values, true and false, to the selected variable. In each sub-formula, those clauses containing the literal which is true for the variable assignmentare erased from the formula, and those clauses which contain the literal which isfalse have that literal removed. Backtrack algorithms di�er in the way they selectwhich variable to set at each iteration. The unit clause rule, the pure literal rule,and the smallest clause rule, are three most common ones. We state each algorithminformally.The ow of control in splitting-based algorithms is often represented by a searchtree. The root of the tree corresponds to the initial formula. The internal nodesof the tree correspond to sub-formulas that cannot be solved directly, whereas theleaf nodes correspond to sub-formulas that can be solved directly. The nodes areconnected with arcs that can be labeled with variable assignments.Simple Backtracking [53]. If the formula has an empty clause (a clausewhich always has value false) then exit and report that the formula has no solution.If the formula has no variables, then exit and report that the formula has a solution.(The current assignment of values to variables is a solution to the original formula.)Otherwise, select the �rst variable that does not yet have a value. Generate twosub-formulas by assigning each possible value to the selected variable. Solve the sub-formulas recursively. Report a solution if any sub-formula has a solution, otherwisereport no solution.Unit Clause Backtracking [425]. This algorithm is the same as simplebacktracking except for how variables are selected. If some clause contains only oneof the unset variables then select that variable and assign it a value that satis�esthe clause containing it; otherwise, select the �rst unset variable.In practice, this improved variable selection often results in much faster back-tracking [34].Clause Order Backtracking [64]. This algorithm is the same as simplebacktracking except for how variables are selected. If this setting does not solvethe formula, then select the �rst clause that can evaluate to both true and falsedepending on the setting of the unset variables. Select variables from this clauseuntil its value is determined.By setting only those variables that a�ect the value of clauses, this algorithmsometimes avoids the need to assign values to all the variables. The algorithm



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 25as stated �nds all the solutions, but in a compressed form. The solutions come incylinders, where some variables have the value \don't care." Thus, a single solutionwith unset variables represents the set of solutions obtained by making each possibleassignment to the unset variables.Probe Order Backtracking [433]. This algorithm is the same as simplebacktracking except for how clauses are selected. Temporarily set all the unsetvariables to some predetermined value. Select the �rst clause that evaluates to falsewith this setting. Return previously unset variables back to unset and continue asin clause order backtracking.For practical formulas one should consider adding the following �ve re�nementsto probe order backtracking: stop the search as soon as one solution is found,carefully choose the probing sequence instead of just setting all variables to a �xedvalue [348, 487, 491], probe with several sequences at one time [69, 70], carefullyselect which variable to set [69, 70], use resolution when it does not increase theinput size [166]. The sixth best prize winning entry in the 1992 SAT competitionused an improvement on probe order backtracking [70].Franco [165] noticed that a random assignment solves a nonzero fraction ofthe formulas in the average l-SAT model when pn is large compared to lnm. Sim-ple uses of that idea does not lead to good average time [433], but combining theidea with clause order backtracking leads to probe order backtracking, which is fastwhen pn is above lnm. Probe order backtracking appears to have some similaritiesto one method that humans use in problem solving in that it focuses the algorithm'sattention onto aspects of the problem that are causing di�culty, i.e., setting vari-ables that are causing certain clauses to evaluate to false. For the same reason itis somewhat similar to some of the incomplete searching algorithms discussed inSection 7.Shortest Clause Backtracking. This algorithm is the same as clause orderbacktracking except for the clause selected. In this case, select the shortest clause.The corresponding idea for constraint satisfaction is to �rst set a variable inthe most constraining relation. This idea is quite important in practice [34].Jeroslow-Wang [284]. A backtrack search can sometimes be terminated earlyby checking whether the remaining clauses can be solved by a Linear Programmingrelaxation (see Sections 9.2 and 9.3). An implementation of this idea can be expen-sive. Jeroslow and Wang have proposed a simpler and e�ective technique that issimilar in spirit. The idea is, before splitting, to apply a procedure that iterativelychooses the variable and value which, in some sense, maximizes the chance of sat-isfying the remaining clauses. The procedure does not backtrack and is, therefore,reasonably fast. Assignments determined by the procedure are temporarily addedto the current partial truth assignment. If the procedure succeeds in eliminatingall clauses then the search is terminated and the given formula is satis�able. Oth-erwise, the procedure fails, control is passed to the split, temporary assignmentsare undone, and backtracking resumes.The choice of variable and value at each iteration maximizes the weight w(Si;j)where, for a subset of clauses S, w(S) =PC2S 2�jCj, and for i 2 f0; 1g, 1 � j � n,Si;j is the subset of remaining clauses containing variable vj as a positive literal if



26 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHi = 0 and as a negative literal if i = 1. The length of clause C, denoted jCj above,is the number of literals that are not falsi�ed by the current partial assignment andthe sum is over clauses that are not satis�ed by the current partial assignment. Theweight given above may be compared to that given by Johnson in [286] (see also,Other Non-Backtracking Heuristics below).6.3. Backtracking and Resolution. Some algorithms have adapted ideasinspired by resolution to splitting algorithms. For example, from the resolutionview point, pure literals are interesting in that they lead to a single sub-formulathat is no more complex than the original formula, while from the perspective ofsplitting, pure literals lead to two sub-formulas, but the solutions to the sub-formulawhere the literal has the value false are a subset of the one where the literal has thevalue true. Therefore, the original formula has a solution if and only if the formulaassociated with the true literal does.The Pure Literal Rule Algorithm [201]. Select the �rst variable that doesnot have a value. (If all variables have values, then the current setting is a solutionif it satis�es all the clauses.) If some value of the selected variable results in allclauses that depend on that variable having the value true, then generate one sub-formula by assigning the selected variable the value that makes its literals true.Otherwise, generate a sub-formula for both values of the selected variable. Solvethe one or two sub-formulas.6.4. Clause Area. A clause with l distinct literals leads to the fraction 1=2lof the possible variable settings not being solutions. One can think of the clause asblocking out area 1=2l on the Venn diagram for the formula. Iwama showed thatcombining this idea with inclusion-exclusion and careful programming leads to analgorithm which runs in polynomial average time when p > p(lnm)=n [281]. Ifthe sum of the area of all clauses is less than 1, then some variable setting leadsto a solution. This idea works particularly well with shortest-clause backtrackingsince that algorithm tends to eliminate short clauses. See [170] for a probabilisticanalysis of this idea. No average-time analysis has been done.6.5. Improved Techniques for Backtracking. This section considers somere�nements that can be added to the basic backtracking and resolution techniques.Several of these are similar to techniques that have already been discussed.Branch Merging. This is complementary to preclusion. Backtracking isfrequently used on problems such as the n-queens problem where there is a knownsymmetry group for the set of solutions. In such cases many search trees possessequivalent branches which can be merged to reduce search e�ort [34, 547]. The useof the symmetry group can greatly speed up �nding the solutions. See [72, 73] forexamples from the �eld of group theory. Brown, Finklestein, and Purdom [51, 52]gave additional problems that arise in making the backtracking techniques workwith a backtracking algorithm which needs to set variables in di�erent orders ondi�erent branches of the search tree.Search Rearrangement. This is also known as most-constrained search ornonlexicographic ordering search. When faced with several choices of extending a



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 27partial solution, it is more e�cient to choose the one that o�ers the fewest alter-natives [34]. That is, nodes with fewer successors should be generated early in thesearch tree, and nodes with more successors should be considered later. The ver-tical (variable) ordering and horizontal (value) ordering are special cases of searchrearrangement [54, 176, 425, 429, 432, 501]. The rule used to determine whichvariable to select next is often called the branching rule. Many researchers areactively investigating the selection of branching variables in the DP procedures.Hooker studied the branching rule and its e�ect with respect to particular probleminstances [256]. B�ohm and Speckenmeyer experimented with branching e�ect witha parallel DP procedure implemented on an MIMD machine [38]. Boros, Hammer,and Kogan developed branching rules that aim at the fastest achievement of q-Hornstructures [41]. Several particular forms of search rearrangement were discussed inSection 6.2.From 2-SAT to General SAT. In many practical applications, the con-straints in the problems are coded as 2-SAT formulas. In SAT problem formulation,very frequently in practical applications, many of the constraints will be coded as2-SAT clauses.An important heuristic to SAT problem solving is to �rst solve 2-SAT clauseswith fast polynomial time algorithms. This fast operation can signi�cantly reducethe search space. The truth assignment to the rest of the variables can be handledwith a DP procedure. This idea has been used in SAT solver Stamm [69, 70],Gallo and Pretolani's 2-SAT relaxation [69, 70, 422], and Larrabee's algorithm[328, 477]. Similar ideas to solving 2-SAT clauses were developed. Eisele's SATsolver uses a weighted number of occurrences whereas occurrences in 2-SAT clausescount more than other occurrences [69, 70]. D�orre further added a limited amountof forward checking to quickly determine 2-SAT formulas in the Eisele-D�orre SATsolver [69, 70]. In the SAT contest [69, 70] the winning programs with 2-SATsolvers were slightly slower than those without.Similar techniques were developed that use Horn-SAT relaxation in satis�abilitytesting [108, 183]. In Crawford's Tableau [108], Horn clauses are separated fromnon Horn clauses. Based on the DPL procedure, Tableau applies in priority theunit clause rule and if necessary branches on a variable selected in the non Hornclauses using three successive heuristics.Backmarking and Backjump. When a failure is observed or detected, thealgorithm simply records the source of failure and jumps back to the source offailure while skipping many irrelevant levels on the search tree [189, 191]. Themore e�ective one's search rearrangement is, the less need there is for backjumping.Good search orders tend to be associated with the source of failure being one levelback.Backtracking with Lookahead. A lookahead processor is a preprocessing�lter that prunes the search space by inconsistency checking [226, 227, 361, 390].Backtracking with lookahead processing is performed by interplaying a depth-�rsttree traversal and a lookahead tree pruning processor that deletes nodes on thesearch tree whose value assignments are inconsistent with those of the partialsearch path. Techniques in this class include partial lookahead, full lookahead



28 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH[226, 227, 241], forward checking [241, 241], network-based heuristics [361, 128],and discrete relaxation [226, 227, 312, 451].Backtracking for Proving Non-Existence. Dubois, Andre, Boufkhad, andCarlier have recently proposed a complete SAT algorithm, CSAT [151]. The CSATwas developed for the proof of the non-existence of a solution. The algorithm uses asimple branching rule and a local processing at the nodes of search trees (to detectfurther search path consistency and make search decision). It performed e�cientlyon some DIMACS benchmarks.Intelligent Backtracking. This is performed directly to the variable thatcauses the failure, reducing the e�ect of thrashing behavior. Methods in this cat-egory include dependency-directed backtracking [496, 145], revised dependency-directed backtracking [414], simple intelligent backtracking [178], and a number ofsimpli�cations [56, 119, 120, 121, 123, 125, 190, 241, 452].Freeman [175] recently present an intelligent backtracking algorithm, POSIT,for PrOpositional SatIstiability Testbed. In this algorithm he used Mom's heuristic,detecting failed literals, and minimizing constant factors to speed up backtrackingsearch.Some e�ort was devoted to the development of backtracking-oriented program-ming languages, special-purpose computer architectures, and parallel processingtechniques:Macro Expansion. In some applications of backtracking that require rela-tively little storage, this method can be used to decrease the running time of theprogram by increasing its storage requirements. The idea is to use macros in as-sembly language in such a way that some work is done at assembly time instead ofmany times at run time. This increases the speed at which nodes are processed inthe tree [34].Backtrack Programming. Much work has focused on developing a newprogramming language for backtracking search. This includes the sequential3 Pro-log programming language [94, 499], Prolog with intelligent backtracking scheme[58, 323, 413], and logic programming [248].Special-Purpose Architectures. Special-purpose hardware machines werebuilt to prune search space [226, 227, 374], perform backtracking search, and doAI computations [531, 532, 534].Parallel Processing. Many parallel processing techniques have been devel-oped to speed up search computation [23, 99, 531, 343, 535, 344, 342, 250,353, 517, 372, 461, 532, 550].Branch and bound. Also known as ordered depth-�rst search. Select avariable. For each possible value of the variable generate a sub-formula and compute3There is no backtracking mechanism in parallel Prolog programming languages.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 29some quick to compute upper bound on the quality of the solution of the sub-formula. Solve recursively all sub-formulas except those that have a cost above thatof the best solution that has been found so far. Branch and bound is recognized asa generalization of many heuristic search procedures such as A�, AO�, SSS� , B�,alpha-beta, and dynamic programming algorithm [6, 343, 556, 539, 537, 536,328, 333, 341, 410, 266, 556, 555, 549, 554].6.6. Some Remarks on Complexity. The worst-case time for all knownSAT algorithms is exponential in the �rst power of the input size. The naivealgorithm that tries every variable setting requires time 2n for n variable formulas.For l-SAT, the best known bound on worst-case complexity has been worked downfrom 1:618n [385] to slightly below 1:5n obtained by Schiermeyer [464, 465]. Otherwork on the topic is given in [192].As with other NP-complete problems there are no exponential lower boundresults for SAT. However, it has been proven that all resolution algorithms needtime that is exponential in the �rst power of the input size [232, 86, 522]. Nosuch lower bound analyses have been done on splitting-based algorithms.For a comprehensive treatment of the complexity of propositional proofs, see arecent survey by Urquhart [525].7. Local SearchLocal search is a major class of discrete, unconstrained optimization proce-dures that can be applied to a discrete search space. Such procedures can be usedto solve SAT by introducing an objective function that counts the number of un-satis�able (CNF) or satis�able (DNF) clauses and solving to minimize the value ofthis function [207, 209, 212, 221, 403, 472].In this section, we summarize the basic framework, including a search spacemodel, four essential components, and present ideas used in the early developmentof local search algorithms for the SAT problem. We then describe randomizedlocal search, randomized local search with trap handling, and greedy local searchin detail.7.1. Framework. Local search, or local optimization, is one of the primitiveforms of continuous optimization applied to a discrete search space. It was oneof the early techniques proposed to cope with the overwhelming computationalintractability of NP-hard combinatorial optimization problems.There have been two major periods for the development of local search. Earlygreedy local search method was able to solve some small size, unconstrained path-�nding problems such as TSP [351, 401]. During the middle and late eighties,more powerful techniques (see Section 7.3) for randomized local search were devel-oped. These randomized local search algorithm can handle large size, constrainedproblems such as CSP and SAT problems e�ciently [206, 209, 488, 491].Given a minimization (maximization) problem with objective function f andfeasible region R, a typical local search procedure requires that, with each solutionpoint xk 2 R, there is a prede�ned neighborhood N (xk) � R. Given a currentsolution point xk 2 R, the set N (xk) is searched for a point xk+1 with f(xk+1) <f(xk) (f(xk+1) > f(xk)). If such a point exists, it becomes the new current solutionpoint, and the process is iterated. Otherwise, xk is retained as a local optimum withrespect to N (xk). Then, a set of feasible solution points is generated, and each of
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(d)Figure 11. There are a number of local minimum structures. Atrap is a \well" of local minima and is di�cult to deal with.them is \locally" improved within its neighborhood. To apply local search to aparticular problem, one needs only to specify the neighborhood and the procedurefor obtaining a feasible starting solution.Local search can be e�cient for two reasons. First, at the beginning of search,a full assignment is assigned to all the variables in the search space. Search e�ortsare focused on a single path in the search space. Second, local search re�nes forimprovement within its local neighborhood using a testing for improvement and,if there is any improvement, takes an action for improvement. Since the objectivefunction has a polynomial number of input numbers, both testing and action canbe done e�ciently. Little e�ort is needed to generate the next solution point. Amajor weakness of local search is that the algorithm has a tendency to get stuck ata locally optimum con�guration, i.e., a local minimum.Greedy local search pursues only paths where every step leads to an improve-ment, but this leads to a procedure that becomes stuck much more often than therandomized local search. Greedy local search procedure gets stuck in at places aswell as at local minima.Many search techniques, such as statistical optimization [74, 467], simulatedannealing [308], stochastic evolution [457], and conict minimization [206, 380,485, 491], are either local search or variations of local search. For most searchproblems encountered, in terms of computing time and memory space, local searchoften achieves many orders of magnitude of performance improvement over conven-tional techniques such as Branch-and-Bound [209, 212, 436, 487, 491].



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 317.2. A Three-Level Search Space Model. A large number of real exper-imental data suggest that there are several typical local minimum structures (seeFigure 11). A valley and a basin are ideal cases that one can �nd a global minimumquickly. Local search and the related heuristics can handle a terrace and a plateauwithout much di�culty. The most di�cult situation is a trap where a group of localminima is con�ned in a \well." The search process walks around the set of localminima periodically and cannot get away without special mechanism. In generalthere may be many traps in a search problem. The characteristics of a trap areclosely related to the search algorithm, the objective function used, and the searchspace structure.
Figure 12. An informal example of the three-level search spacemodel. A search process would go through an open search in theupper open portion of the search space, a peak search in the middleportion of the search space, and a trap search in the valley portionof the search space.Further observations suggest that a search space may be roughly divided intoseveral di�erent levels, depending on the problem structures. A three-level searchspace structure was proposed during the development of the SAT1:5 algorithm (seeSection 7.7) [209, 219]. An informal example of the model is given in Figure 12.In the model, a search space is roughly viewed in three levels: top level, middlelevel, and bottom level. The top level is the upper open portion of the searchspace with smoothing edges. Most optimization algorithms can descend quickly inthe top level and thus perform quite well. The middle level is the middle portionof the search space where there are relatively \big mountain peaks." During thedescent, the search process may encounter problems and it may have to use sometunneling and random heuristics (see Section 7.3) to proceed. The bottom levelis the bottom portion of the valleys (particular the lowest valley) where there aremany traps. When local search falls into a trap it may become locked into a loopof local minima. Most algorithms do not succeed in this stage and have di�cultycontinuing.For the SAT problem, with high probability, a greedy local search will fall intoa trap much more easily. In this case some variables are updated very quickly. The



32 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHrelated clauses oscillate between the sat and unsat states. The search is limited tothese states. Without any help, there is little chance of getting out to explore otherstates.The above observations suggest to use multiphase search to handle the NP-hardproblems [209, 223, 219]. That is we may use an open search in the top level, apeak search for searching \coarse" peak structures in the middle level, and a trapsearch for tracking \�ne" rugged trap surface structures in the valleys.The major heuristics used in local search are discussed in the next subsection.7.3. Four Components in Local Search. A number of e�cient local searchalgorithms for the SAT problem have been developed since 1987. Previous expe-rience indicated that the greedy local search strategy alone can not be adapted toperform well on SAT formulas. Past lessons showed that the following four com-ponents are crucial to the development of an e�cient local search algorithm forthe satis�ability and NP-hard problems. They are: (1) the min-conict heuristics,(2) the best-neighbor heuristics, (3) the random value/variable selection heuristics,and (4) the trap handling heuristics.1. The Min-Conicts Heuristics.Di�erent forms of min-conict heuristics were proposed during 1985 and 1987for solving the SAT and CSP problems [206].4 The min-conict heuristics aim atperforming local conict minimization in Boolean, discrete, and real spaces [454]:5 Min-conict heuristics are important to handle constraints in a constrained opti-mization problem.Min-Conict Heuristic (Boolean Space) [206]. Multiple values to beassigned to a variable are represented by a vector of Boolean labels. Each Booleanlabel, either \1" or \0," indicates the variable's instantiation to a speci�c value.Two labels are conicting if their values do not satisfy the given constraint. Theconicts (due to an assignment) are formulated as a set of objective functions. Theobjective functions are minimized by changing values assigned to the labels.Min-Conict Heuristic (Discrete Space) [206]. Interrelated objects arechosen as variables. Two variables are conicting if their values do not satisfy thegiven constraint. The number of conicts (due to an assignment) is formulated inan objective function. The objective function is iteratively minimized by changingvalues assigned to the variables.Min-Conict for SAT [207, 221, 209, 210, 212]. Using inconsistency asobjective [206], the objective function for the SAT problem gives the number ofunsatis�ed clauses. A CNF is true if and only if the objective function takes theglobal minimum value 0 on the corresponding solution point.4In the early days min-conict was variously called inconsistency removing, inconsistencyresolution, conict resolution, enforce local consistency, and local conict minimization [206].Later, Minton shortened these words into a concise term: min-conicts.5The min-conict heuristics also work in real space (see examples in [210, 211, 213] andSection 8).



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 33This objective function is the basis of the design of the SAT1, SAT2, SAT3,and GSAT algorithms [209, 210, 221, 212, 472].Performance. The min-conict heuristics have been applied to solve the CSPand SAT problems since 1985 [206, 207, 485, 484, 221, 209]. They showedsigni�cant performance improvements when compared to traditional backtrackingsearch algorithms. The e�ectiveness of min-conicts heuristic was further observedby Russel and Norvig [454], Kumar [321, 322], Johnson [295], Minton et al. [380],and Selman et al. [472].Early local search algorithm can only handle small size path-�nding problemsuch as TSP. By introducing the min-conicts heuristics, local search can nowhandle di�cult constrained problems.2. The Best-Neighbor Heuristics.Local search proceeds by taking any feasible solution point that reduces theobjective function. Among many neighboring feasible solution points, local searchdoes not take into account its neighbors' relative performance with respect to theobjective function.Best-Neighbor Heuristic [209, 212, 213]. A greedy algorithm selects thebest neighbor that yields the minimum value to the objective function and takesthis best neighbor direction as the descent direction of the objective function.In a real search space, continuous optimization algorithms can �nd the bestneighbor feasible solution e�ciently. A number of local and global optimizationalgorithms have been developed to solve the SAT problem [209, 212, 213]. The�rst version of the GSAT algorithmwas proposed as a greedy local search algorithm[472].Performance. A greedy local search alone may become stuck at local minimamuch more often and therefore may not be e�cient in practice. Therefore, thebest neighbor heuristic should be used in conjunction with random value/variableselection and trap handling heuristics described next.3. The Random Value/Variable Heuristics.Random value assignment and random variable selection techniques are funda-mental to the design of an e�ective local search algorithm for NP-hard problems[228, 224].Random Flip Heuristic [206, 209, 221, 210, 212]: Randomly ip the truthvalues of 1 � k � n variables in the SAT formula.This simple heuristic was �rst implemented in several SAT1 algorithms as localhandler(s) in 1987. It has been proven to be e�ective in improving the performanceof greedy local search algorithms [209, 221, 210, 212].During 1988 to 1990 a similar heuristic, random swap, was used to developlocal search algorithms for the CSP (e.g., n-queen) problems. It showed signi�cant



34 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHperformance improvement for solving large-size n-queen problems [206, 486, 487,488, 491].Random Value (Assignment) Heuristics [206, 209, 221, 212, 351, 401,487, 488, 491]. These include: randomly select a value that generates the mini-mum number of conicts; randomly select a value if there is a symmetry (i.e., morethan one value producing the same performance); and randomly select a value forconict minimization when local minima are encountered.A simple random value assignment heuristic, random disturbance, was earlyused in solving the TSP problem.Random Variable (Selection) Heuristics [206, 209, 221, 212]. Thereare two important heuristics:1. Any Variable Heuristic: select any variable randomly.2. Bad Variable Heuristic: select a variable from the set of conicting vari-ables randomly.The random variable selection heuristic is one of the most important heuristicsin the design of local search algorithms for NP-hard problems. It was �rst usedin the local search solution for the SAT problem [207] and then used for the localsearch solution for the CSP (e.g., n-queen) problems [487].Conicting variables in the SAT problem contribute to the unsatis�ed clauses.Accordingly we have:Bad Variable Heuristic for the SAT problem [209, 212, 487, 488,491, 486, 484]: randomly select a variable in the unsatis�ed clauses for conictminimization.The bad variable heuristic was �rst implemented to solve the large size n-queenproblems during 1988 to 1990 [487, 488, 491, 486, 484] and was implemented inthe SAT2 algorithm in 1990 [209, 212]. The bad variable heuristic was indepen-dently developed by Papadimitriou for the 2-SAT problem in 1991 [402] and wasused in the WSAT algorithm by Selman et al. in 1994 [475].Partial/Pre- Random Variable Selection Heuristics [206, 209, 221,212]. Partial variable random selection makes use of partial or alternating variableselection techniques. Variants of partial random selection include partial and alter-nating selection of conicting and non-conicting variables, a combination of partialdeterministic and partial random variable selection, partial interleaved selection ofthe di�erent search phases, and partial random selection with meta-heuristic con-trol. The simplest selection strategies include: select a variable deterministically(randomly) and select another variable randomly for conict minimization; select avariable deterministically (randomly) from the set of conicting variables and selectanother variable randomly for conict minimization; select a variable deterministi-cally and select another variable randomly from the set of conicting variables forconict minimization; during certain periods of search, select a variable determinis-tically (randomly) and select another variable randomly for conict minimization;during certain periods of search, select a variable deterministically (randomly) from



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 35the set of conicting variables and select another variable randomly for conict min-imization; during certain periods of search, select a variable deterministically andselect another variable randomly from the set of conicting variables for conictminimization.Partial Random Variable Selection Heuristics for the SAT problem:a variable may be selected from the unsatis�ed clauses in a random, partially al-ternating, partially periodic, or partially interleaving order.The partial and pre- random variable selection heuristics were implementedin the SAT3 algorithm in 1990 [209, 212] and were used to solve the large sizen-queen problems around 1990 [487, 488, 491, 486, 484]. A similar heuristic tothe partial random variable selection, random walk, was developed by Selman,Kautz, and Cohen independently in 1994 [475].Performance. Random and partial variable selection heuristics were intro-duced in the design of SAT1, QS2, QS3, and QS4 algorithms [207, 221, 209,212, 485, 487, 488, 491]. They can overcome the weakness of the greedy localsearch algorithms. Compared to greedy local search, they can o�er many orders ofmagnitude of performance improvements in terms of computing time, solving hardand large satis�ability problems and CSP problems with multi-million variables inseconds [209, 212, 487, 491]. They were used in the design of SAT1:5, SAT2,and SAT3 algorithms [209, 212].Selman et al. have recently developed and applied a number of random variableselection heuristics to improve the performance of the greedy GSAT algorithm[475].4. The Trap Handling Heuristics.The search is a process of combating local minima. When the search processis approaching the �nal search stage, trap handling heuristics are needed to copewith local minima and traps (see Sections 7.2 and 7.7).Tunneling Heuristic [221, 212, 545]: Change the value of a variable if itdoes not change the value of the objective function.Tunneling Heuristic for the SAT Problem [221, 212, 472]: Flip thetruth value of a variable if it does not change the value of the objective function(see Section 7.6).Local Tracking Heuristics [209, 219]. Local tracking heuristics are used totrack and break local loops (a periodic occurrence of a set of local minima). Severalfrequently used heuristics include: track local loop(s) when falling into a trap; givelow priority to ip to variables in a local minimum loop; give high priority to ip tovariables that lead to a new descending direction; lock and release trapping variablesperiodically, adaptively, or statistically; move gently in a trap to handle �ne localstructures; move strongly in a trap to handle coarse local structures; jump out of atrap if walking inside it su�ciently long.



36 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHMultiphase Search Heuristics [207, 209, 488, 491, 212, 436, 545, 219].Multiphase heuristics are a part of multispace search heuristics [222, 228, 224].They have been developed to adapt to the di�erent phases of a search process: per-form a poor initial search and then a serious local search for conict minimization;perform a good initial search and then a serious local search for conict minimiza-tion; perform a good initial search, then a rough local search, and a serious localsearch for conict minimization; perform an initial search, and then a rough localsearch and a serious local search alternatively for conict minimization; perform arough initial search, then a coarse local search, and �nally, a �ne local search forconict minimization.Multispace Search Heuristics [222, 228, 224]. Structural multispace op-erations have been developed that empower a search process with an informationux which is derived from a sequence of stepwise structural transformations (seeSection 11.4). These include multispace scrambling, extradimension transition,search space smoothing, multiphase search, local to global passage, tabu search,and perturbations. They can disturb the environment of forming local minima andfacilitate e�cient local search when there are many local minima.Performance. Trap handling heuristics have signi�cantly improved the searche�ciency of the SAT1.5 algorithm [209, 212, 219] (see Section 7.7). Multiphaseand multispace search heuristics have been applied to a variety of practical appli-cations and found to be e�ective [222, 209, 212, 224, 219, 436, 545, 488, 491].7.4. Boolean Local Relaxation. Boolean local relaxation may be viewedas a deterministic local search. It was an early inconsistency relaxation techniquedeveloped for solving the constraint satisfaction and satis�ability problems. Fora variable having m values, m Boolean labels are used to indicate the variables'instantiation to the particular Boolean values. The conicts produced by an as-signment are coded in a set of Boolean objective functions (one for each label). Theobjective function for the ith variable and kth label, fi;k, is de�ned as [206]:6fi;q = nYj=1 mXp=1 li;q ^ Ci;j(q; p) ^ lj;p;(7.1)where Ci;j(q; p) is a constraint between labels li;q and lj;p. Note that the right handside of Eq. (7.1) is a CNF formula with extended literals.The Boolean relaxation is a local conict minimization process (Figure 13)[206]. During each iteration, the algorithm checks each variable for every label anditeratively minimizes the objective functions by ipping bits (truth values) assignedto the labels: If the objective function does not change, keep it; If the objectivefunction can be reduced, keep the best (i.e., update the label), and then reportthe inconsistency status. The iteration will terminate once the inconsistency signalturns o�.The Boolean local relaxation algorithm was suitable to VLSI implementation.During 1985 to 1988, several parallel algorithms and architectures, such as DRA2,DRA3, and DRA5 were implemented to speed up CSP/SAT computations [206,6In [206] the objective function was de�ned for label li;k directly.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 37procedure DRA()boolean inconsistency;begininconsistency := TRUE;k := 0;while inconsistency = TRUE dobegininconsistency := FALSE;for variable i := 1 to nfor label q := 1 to mbeginfk+1i;q := evaluate objective function(l; C);/* local conict minimization */if fk+1i;q = fki;q then continue;if fk+1i;q < fki;q then update label value;inconsistency := TRUE;end;k := k + 1;end;end;Figure 13. DRA: A local relaxation algorithm.226, 544, 227]. Furthermore they were combined with backtracking search forCSP/SAT applications [206].Because of its iterative local conict minimization and its direct applicationsto SAT/CSP, Boolean local search made itself a predecessor of several early localsearch algorithms for CSP and SAT problems.7.5. Constraint Satisfaction, Simulated Annealing, and ComplexityStudy. Early work on constraint satisfaction, simulated annealing, and complexitytheory contributed signi�cantly to the original development of local search algo-rithms for the SAT problem. Four notable early developments are: (1) the SAT1algorithms, (2) the n-queen models and algorithms for scheduling applications, (3)a simulated annealing algorithm, and (4) a 2-SAT algorithm.1. The SAT1 Algorithms.Objective functions in DRA algorithms were de�ned for Boolean labels. Duringthe late eighties, Gu [206] observed that if the conicts of all the Boolean objectivefunctions were formulated in one objective function, then the global minimum ofthe objective function would correspond to a conict-free solution of the givenCSP problem. Accordingly, the iterative local minimization procedure used inthe Boolean relaxation would become a local search procedure to minimize theobjective function. This idea led directly to the early design of SAT1 algorithmswhere the objective function was de�ned as the number of unsatis�ed clauses overall the variables [206, 207]. Thus, the global minimum of the objective functioncorresponds to the solution of the SAT problem. Following this, Gu developed a



38 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHnumber of randomized local search algorithms for the SAT problem. Furthermoree�cient heuristics (Section 7.3) were developed to improve the performance of thelocal search algorithms. Due to the important industrial applications at that time,the e�ectiveness of the SAT1 algorithms was tested through two CSP benchmarks,i.e., the SAT problem and the n-queen problems.An important industrial application for SAT is VLSI engineering. The SAT1algorithm family, the �rst local search algorithm for SAT, was developed for the-oretical study and VLSI applications. During the late eighties, there was littleprogress in the theoretical analysis of the SAT1 algorithms. The SAT1 algorithmwas applied to VLSI circuit testing and synthesis. All these problems can be for-mulated as instances of the SAT and MAX-SAT problems. The SAT1 algorithmwas found to be e�cient for many VLSI design problems.Another important application area for the SAT problem is industrial schedul-ing. During the late eighties, IBM and NASA were working on a number of impor-tant scheduling projects. These applications involved solving large size schedulingand task assignment problems under critical timing, spatial, and resource con-straints. The scheduling and task assignment problems are well-known as the sat-is�ability problem. SAT formulas characterize these problems precisely. Signi�cantlocal search solutions to the scheduling and task assignment problems were derivedfrom the SAT1 algorithm family. Due to its abstract CNF formulation, however,the SAT problem was not able to provide a descriptive geometric model that wasable to demonstrate the scheduling and task assignment operations expressively.2. N -Queen Scheduling Models and the QS Algorithms.The n-queen problem is a benchmark for constraint satisfaction problem. Dur-ing the middle and late eighties, Gu worked on various n-queen problem modelsfor combinatorial optimization [206, 228]. He found that, by a remarkable coin-cidence, the n-queen model represents a signi�cant model for scheduling and taskassignment problems.The underlying structure of the n-queen problem, represented by a completeconstraint graph, gives a relational model with fully speci�ed constraints among themultiple objects [206]. Variations on the dimension, the objects' relative positions,and the weights on the constraints led to a hyper-queen problem model whichconsists of several simple and basic models:� n{queen problem: the base model. N queens are indistinguishable and theconstraints among queens are speci�ed by the binary values (i.e., 1 or 0).� w{queen problem: the weighted n-queen model. N queens are distinguish-able (each is associated with a cost) and the constraints among queens arespeci�ed by some weights.� 3d{queen problem: queens are to be placed in a 3-dimensional (l�m�n)rectangular cuboid. A special case, nm{queen, is to place queens on an nby m rectangle.� q+{queen problem: more than one queens are allowed to be placed on thesame row or the same column.Based on the n-queen, the hyper-queen problem can model the objects/tasks, theperformance criteria, the timing, spatial, and resource constraints for a wide rangeof scheduling and task assignment problems. This made the n-queen problem a



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 39general model for many industrial scheduling and task assignment problems. By aremarkable coincidence, the models of several di�cult scheduling projects at thattime were either the n-queen or the hyper-queen problems [292, 501]. All of themrequired e�cient solutions to the n-queen or hyper-queen problems.Scheduling problems modeled by various hyper-queen models have speci�c per-formance criteria and are known to be NP-hard. When scheduling computationaltasks onto multiprocessors, for example, one can use a hyper-queen model wherethere are q+ weighted queens to be placed on a t by p rectangle. Let t denote theexecution time, p the number of processors, qi the execution time of the ith task,and cij the communication time from the ith task to the jth task, the goal is toplace the task queens onto the t by p board and minimize the longest executionpath, following the given topological constraints.The hyper-queen models freed the original n-queen problem from its puzzlegame background. Many practical applications of the n-queen and hyper-queenmodels to real world problems have been found. These include [214, 491] taskscheduling, real-time system, task assignment, computer resource management,VLSI circuit design, air tra�c control, communication system design, and so on.Polynomial time, analytical solutions for the n-queen problem exist but theycannot solve the general search problems and have no use in practice [2, 10, 30,156, 252, 445]. Following local conict minimization [206, 226], a QS1 algorithmwas developed during late 1987 and was implemented during early 1988. It wasthe �rst local search algorithm developed for the n-queen problem [206, 484, 485,486]. Three improved local search algorithms for the n-queen problem were devel-oped during 1988 to 1990 [321, 322, 295, 454]. QS2 is a near linear-time localsearch algorithm with an e�cient random variable selection strategy [487]. QS3is a near linear-time local search algorithm with e�cient pre- and random variableselection and assignment [487]. QS4 is a linear time local search algorithmwith e�-cient partial and random variable selection and assignment techniques [488, 491].Compared to the �rst local search algorithm [206], partial and random variableselection/assignment heuristics have signi�cantly improved search e�ciency by or-ders of magnitude. QS4, for example, was able to solve 3,000,000 queens in a fewseconds.Three years after releasing the QS1 algorithm, Minton et al. independentlyreported a similar local search algorithm for the n-queen problem [379, 380]. Amajor di�erence between Minton's algorithms and Sosic and Gu's algorithms wasthat Minton's �rst algorithm was a one dimensional local search without usingrandom heuristics.Early local search solutions for scheduling applications were developed duringthe late eighties. Since then more than one hundred industrial companies worldwidehave developed software systems for various scheduling applications.3. A Simulated Annealing Algorithm for Max-SAT.Motivated by the method of simulated annealing, Hansen and Jaumard [239]proposed a steepest ascent, mildest descent algorithm for the maximum satis�a-bility (Max-SAT) problem. In this approach, Hansen and Jaumard focused on alocal change and de�ned an objective function based on a switching variable andits related clauses. The objective function maximizes local compensation for each



40 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHvariable which can be used for solving the Max-SAT problem. The objective func-tion can not be used for the SAT problem unless another objective function whoseglobal minimum corresponds to a solution of the SAT problem is given. Further-more, Hansen and Jaumard used local optima checking to handle the local optimumand found it by providing additional guidance to the search direction.4. Theoretical Study for SAT1 and 2-SAT.During the early nineties, researchers started to work on the theoretical analysisof local search algorithms for CSP and SAT problems. In 1991 two theoreticalstudies that focused on the SAT problem were reported. Gu and Gu took threealgorithms (i.e., SAT1:1, SAT1:2, and SAT1:3) from the SAT1 algorithm familyand made average time complexity study for the SAT problem [221].During the study of the complexity of a certain natural generalization of SAT,Papadimitriou gave a randomized algorithm for the 2-SAT problem [402]. Further-more Papadimitriou showed that such a randomized algorithm �nds assignmentsfor 2-SAT instances in O(n2) steps with probability approaching one, where n isthe number of variables. With further extensions [404], in theory, the algorithmcan be applied to solve the random 3-SAT problems.Early on, local search method for the large size n-queen scheduling problemattracted great attention in the AI area. This was due to the close relationshipbetween CSP and SAT: the SAT problem is a special case of CSP. The n-queenproblem, on the other hand, is a typical benchmark problem in CSP. If one can �ndan e�cient (non-analytical) search algorithm for the n-queen problem, then thealgorithm can be directly translated to an e�cient algorithm for the SAT problem.Analytical solutions exist for the n-queen problem with n greater than or equalto 4 [10, 156, 252, 445]. They consist of a restricted subset of solutions [10]. Ifone formulates the n-queen problem as a CSP, backtracking can be used to searchfor any general solution. In practice, backtracking search is too slow to solve the n-queen problem for n larger than 96 [501]. Thus local search algorithms for solvinglarge size n-queen problems become a breakthrough point in this direction. Fol-lowing recent work for solving large scale n-queen problems, Selman, Levesque andMitchell reported empirical results of GSAT , a greedy local search algorithm forsolving SAT [472]. Selman [471] has recently acknowledged that local search solu-tions to large-size n-queen problems was \the original impetus" to the developmentof the GSAT algorithm [472].7.6. Randomized Local Search. In this section, we describe the basic struc-ture and major components of the randomized local search algorithms for the SATproblem.Model. Most discrete local search procedures were developed based on adiscrete, unconstrained optimization model, the SAT1 model [207, 209, 212, 221].In this model, the truth values assigned to the variables are de�ned as:xi = � 1 if the variable has value true�1 if the variable has value false(7.2)



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 41procedure SAT1.0 ()begin/* initialization */get a SAT instance();x0 := select a random initial point();F (x0) := evaluate objective function(x0);/* search */k := 0;while F (xk) 6= 0 dobeginfor each variable i := 1 to n do/* if ip(xi,xi) does not increase F */if test ip(xi,xi) thenbeginxk+1 := perform ip(xi,xi);F (xk+1) := evaluate objective function(xk+1);end;/* random ips */if local then local handler();k := k + 1;end;end;Figure 14. SAT1.0: a randomized local search procedure for theSAT problem [209, 212, 221]. Random ips are introduced (1)to disorder the sequence with which the variables are selected forlocal optimization, and (2) to perturb local search with randomizeddownhill, tunneling, or uphill moves [221, 212].The objective function, F (x), in the SAT1 model counts the number of unsatis�edclauses as its objective value. A CNF is true if and only if F (x) takes the globalminimum value 0 on the corresponding x.Basic Local Search. The SAT1.0 algorithm for the SAT problem is shown inFigure 14. It consists of an initialization stage and a search stage. At the beginningof search, a SAT formula is generated. An initial random solution is chosen. Thenumber of unsatis�able clauses is computed and is assigned as the value of theobjective function. During each iteration, function test swap() performs a test to seeif the objective function would increase. If test ip() returns true, a ip operation isperformed by procedure perform ip(). Then function evaluate objective function()updates the objective function.The procedure terminates when the objective function is reduced to zero, i.e.,a solution to the given SAT instance is found. In practice, before the objectivefunction reduces to zero, the procedure may become stuck at local minima. Inthe SAT1.0 algorithm [209, 221], a simple local handler performing random ipswas used (Figure 15). This combined the greedy local descent (reducing objectivefunction) with the random uphill moves (increasing objective function), improving



42 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHprocedure Local handler ()beginrandom select some variable xt's;xk+1 := perform ip(xt's,xt's);F (xk+1) := evaluate objective function(xk+1);end;Figure 15. A simple local handler used in the SAT1 algorithms[209, 212, 221]. Random ips or a new random solution wereapplied to the algorithm if (1) F 6= 0 (SAT1.0 algorithm), (2) F >0 (SAT1.1 algorithm), (3) F (xk+1) = F (xk) (SAT1.2 algorithm),and (4) F > 0 and F (xk+1) = F (xk) (SAT1.3 algorithm) [209,212, 221].SAT1's convergence performance e�ectively. In the SAT1 algorithm family, one ormore local handlers were implemented [221, 209, 212]. If the algorithms have di�-culty to proceed, the algorithms will call the local handlers and use other heuristics(see Section 7.3) to improve algorithms' convergence performance.The random ips used in the SAT1 algorithmsmake the order of selecting whichvariable for local examination (i.e., the for loop) trivial [221, 209, 212]. One canessentially select any variable randomly for examination during any phase of thelocal search.Random Flips (Noise). If the local search procedure becomes stuck at alocal minimum, further progress may be achieved by using a noise perturbation tochange its location in the search space. The e�ectiveness with which local min-ima are handled signi�cantly a�ects the performance of a local search algorithm.Researchers have proposed a number of techniques such as jumping, climbing, an-nealing, and indexing to handle local minima [222]. In simulated annealing, asearch process occasionally moves up rather than down in the search space, withlarge uphill moves being less likely than small ones. The probability of large uphillmoves is gradually reduced as the search progresses.A variety of local handlers have been designed for use in the local search algo-rithms [221, 212]. SAT1:0 [207, 221, 209, 212] uses a local handler that mayrandomly negate the truth values of one or up to n variables (a new solution point)(Figure 15). The basic idea is to generate random exchanges in some current so-lution points when the search is stuck at a local minimum. The search accepts amodi�ed point as a new current solution not only when the value of the objectivefunction is better but also when it is worse [221, 207, 209, 212] (Traditional localsearch such as GSAT used the greedy local descent and restart [472]). This simplelocal handler has e�ectively improved the convergence performance of the SAT1:0algorithm.Tunneling Heuristic. A local handler and its activating condition(s) havesigni�cant e�ect on the performance (running time and average running time) ofa local search algorithm for the SAT problem. The conditions for activating localhandlers di�er from algorithm to algorithm (see Figure 15). In SAT1:1 algorithm,
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Figure 16. Tunnelingthe local handler is called if the objective function is not zero (an aggressive strat-egy) [221, 212]. In SAT1:2 algorithm, the local handler is called if the objectivefunction does not increase [221, 212]. In SAT1:3 algorithm, the local handler iscalled if the objective function does not increase or the objective function is greaterthan zero for some iterations [221, 212]. In the last two algorithms, the condi-tion \objective function does not increase" means that the objective value is eitherreduced (local descent) or remained unchanged (tunneling heuristic).Instead of making a random swing in the vertical direction in the search space,whenever a local minimum is encountered, one can tunnel through the rugged ter-rain structure in a horizontal direction, moving from one local basin to anotherlocal basin in an attempt to locate a better locally optimal solution. A tunnel(see Figure 16) can be thought of as a short-cut passing through a mountain sep-arating points of equal elevation. Whenever a local minimum is encountered, atunnel is made through a mountain to a neighboring basin as long as this does notchange/increase the objective function. Tunneling can be used to search a regionwith local minima e�ectively. The behavior of local search with tunneling illustratesthe fact that seemingly innocuous changes in an optimization routine can have asurprisingly large e�ect on its performance. When tunneling was �rst implementedin the SAT1 algorithm in the late eighties. it was proven to be e�ective in solvingsome SAT problems.Parallel Local Search. Several parallel algorithms and VLSI architectureshave been developed to accelerate CSP and the SAT problems [226, 227, 212,492]. Depending on implementations, there are several ways of grouping variablesor clauses together in parallel so they can be evaluated simultaneously. In theSAT1 algorithms, the most frequently used part of computation is the functionevaluate objective function(). It takes O(ml) time to update the objective function.The execution of evaluate objective function can be done in a simple bit-parallelmanner in O(m) time on a sequential computer.A computer word has 32 or 64 bits (such as the DEC Alpha machine). Thenumber of literals in a clause of most practical CNF formulas is much less than 32.In a local search algorithm, therefore, one can pack all the literals in a clause into thebits of a computer word and then evaluate all the literals in one clause in parallel.For m clauses, instead of O(ml), it will take procedure evaluate objective function



44 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHO(m) time to evaluate and update the objective function. Occasionally, a clausemay have more than 32 literals, they can be packed in several computer words andall of them can be evaluated simultaneously. This general bit-parallel evaluationmethod was implemented in the SAT1:7 algorithm [207, 212].Complete Local Search. Local search algorithms are incomplete, i.e., theycan �nd some solutions for certain CNF formulas and give no answer if the CNFformula is not satis�able. To overcome this problem, researchers developed com-plete local search algorithms to test satis�ability as well as unsatis�ability. Thebasic idea in the SAT1.11 and SAT1.13 algorithms [207, 212] was to combine lo-cal search with a systematic search procedure, keeping local search's e�ciency whilemaintaining search completeness by the systematic search method [207, 212]. If ata node of the search tree a solution point is found unsatis�able, then the algorithmbacktracks and continues searching until a solution is found or unsatis�ability isproven.The SAT1.11 and SAT1.13 algorithms were two early experiments of completelocal search algorithms [207, 212]. Probe order backtracking is a simpli�ed versionof complete local search [433, 434]. Recently Crawford studied a complete localsearch algorithm [110]. He used weights assigned to clauses to help choose branchvariables. Variables occurring in heavily weighted clauses were given precedence.7.7. Randomized Local Search with Trap Handling. Based on earlyobservation of trap phenomenon and the development of a three-level search spacemodel (Section 7.2), Gu et al. developed a SAT1.5 algorithm with trap handlingability [209, 219]. The SAT1.5 algorithm can monitor and break local minimumloops and can handle multiple traps during the search. The current version of theSAT1.5 algorithm contains advanced data structures and complicated trap detec-tion/handling methods [209, 212, 219]. For the sake of simplicity, Figure 17 givesa brief outline of the algorithm.The SAT1.5 starts with an initial random solution and a set of limiting pa-rameters. Max Time, for example, speci�es the maximumnumber of times allowedto restart a new search. The number of unsatis�able clauses is computed and isassigned as the value of the objective function. The �rst while loop is limited bythe Max Time. Procedure complete ip() ips all the variables that can reduce thevalue of the objective function. Evaluate objective function() updates the objectivefunction.The second while loop is a randomized local search with trap tracking and han-dling. Trap detection facilities are installed several places in the while loop to recordtrap statistics. They are essential to �gure out trap \height," \width," and otherparameters for subsequent decision making. A trap may contain a global minimumsolution and it must be searched with reasonable e�ort. Leaving a trap too earlyor too late could result in either losing solutions or wasting computing time. Thetime to jump out of a trap is determined by parameter Max Trapping Times.When the search algorithm jumps out of a trap, there are several alternativesto pursue. One is to start a new search. In the while loop, several randomizedlocal search procedures deploying random value and random variable heuristics(see Section 7.3) are grouped together with partial random selection heuristics.They together select a variable for randomized local search (the objective functionF may increase during the search).



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 45procedure SAT1.5 ()begin/* initialization */get a SAT instance();x0 := select a random initial point();F (x0) := evaluate objective function(x0);/* search */k := 0; Restart T imes := 0;while F > 0 and Restart T imes < Max T ime dobegin/* Open Search: ip all variables that reduce F */xk+1 := complete ip(xk);F := evaluate objective function(xk+1);/* parameters for trap tracking */Clean trap records(); Trapping T imes := 0;/* Peak Search: randomized local search */while F > 0 and Trapping T imes < Max Trapping T imes dobegin/* randomly select one var for randomized local search */xi := select one var to ip(xk+1);xk+1 := randomized local search(xi,xi);F := evaluate objective function(xk+1);/* Trap Search */if a trap is detected thenbegin Trapping T imes ++;/* random ip vars in conicting clauses */xk+1 := strong ip(xk+1);F := evaluate objective function(xk+1);/* random ip a few percent (pct) of variables */xk+1 := gentle ip(xk+1,pct);F := evaluate objective function(xk+1);/* random ip a small set of variables */xk+1 := weak ip(xk+1,set);F := evaluate objective function(xk+1);/* initialization for a new trap */Clean trap records();end;end;if F > 0 thenxk+1 := restart a new random point();Restart T imes + +;k := k + 1;end;end;Figure 17. SAT1.5: a randomized local search procedure withtrap handling.



46 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHIf a trap is detected, a number of strategies can be used to conduct a trapsearch [212, 219]. In one approach proposed by Gu et al., a sequence of randomip operations is performed (see Figure 17). The intensity of the ip operationsevolves from strong to weak, tailored to the \coarse" as well as \�ne" structuresin a trap. That is, a variable is ipped in each unsat clause to force it to valuetrue (procedure strong ip()), followed by a random ip of a few percent of thevariables (procedure gentle ip()), and �nally, a random ip of a small number ofvariables (procedure weak ip()). Additional facilities for hill climbing, tabu search,and variable locking/unlocking were developed. The SAT1.5 algorithm can walkon the rugged surface of a trap adaptively.The real execution performance of the SAT1.5 algorithm (Section 13.2) suggeststhat it is presently one of the fastest local search algorithms for the SAT problem.7.8. Greedy Local Search. Traditional local search proceeds by taking afeasible solution point that reduces the value of the objective function. Amongmanyneighboring solution points, local search does not evaluate its neighbors' relativeperformance with respect to the objective function. A greedy algorithm selects thebest neighbor that yields the minimum value of the objective function and takesthis best neighbor direction as the descent direction of the objective function. Ina real search space, continuous optimization algorithms can �nd the best neighborsolution e�ciently. Unconstrained local and global optimization algorithms havebeen developed for solving the SAT problem (see [209, 213] and Section 8).In the discrete search space, a greedy local search algorithmsearches for the bestneighbor solution. This requires that during each iteration the algorithm examineall the possible moves and select one with maximum descent. Greedy local searchis a special case of the coordinate descent in the real space.Selman et al. proposed a greedy local search procedure, i.e., GSAT, for theSAT problem [472]. During each search step, the algorithm evaluates all the movesprocedure GSAT ()beginfor i := 1 to MAX-TRIEST := a randomly generated truth assignmentfor j := 1 to MAX-FLIPSif T satis�es � then return Tp := a propositional variable such that a changein its truth assignment gives the largestincrease in the total number of clausesof � that are satis�ed by TT := T with the truth assignment of p reversedend forend forreturn \no satisfying assignment found"endFigure 18. GSAT: aGreedy local search procedure for the SATproblem [472]. MAX-FLIPS, MAX-TRIES are constants, and �is a set of clauses. During each search step, GSAT takes the bestneighbor that gives the maximumdescent to the objective function.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 47and selects the best move that gives the greatest decrease in the total number ofunsatis�ed clauses. If the algorithm becomes stuck at a local minimum,GSAT usesside-walk (a form of tunneling heuristic) to move aside. In GSAT procedure, twoparameters, MAX-TRIES and MAX-FLIPS, were used to control the algorithm'smaximum running state.Late eighties VLSI researchers experimented with a large number of practicalSAT formulas with the greedy local search and found that greedy local search be-came stuck at local minima much more easily. Accordingly, Gu proposed a methodof combining local descent with random, multiphase search, and trap handlingheuristics (see Section 7.3 and Section 7.7). These ideas were used in the subse-quent SAT1 algorithm family design [221, 207, 209, 212].Recently Selman et al. used the bad variable heuristic and the partial randomvariable selection heuristics (Section 7.3) in their random walk heuristic [475, 474].They found that these random heuristics (such as random ips, selecting a variablein unsat clause, and partial random variable selection) improved the performanceof the GSAT algorithm signi�cantly [475].7.9. Tabu Local Search. Mazure, Sais, and Gregoire proposed a tabu searchalgorithm, TSAT, for satis�ability problem [370]. The basic idea behind the TSATis to avoid using randomness in local search algorithm design. TSAT makes asystematic use of a tabu list of variables in order to avoid recurrent ips and thusescape from local minima. The tabu list is updated each time a ip is made.TSAT keeps a �xed length-chronologically-ordered FIFO list of ipped variablesand prevents any of the variables in the list from being ipped again during a givenamount of time.In this study, Mazure et al. found that the optimal length of the tabu listis crucial to the algorithm's performance. They showed that, for random 3SATinstances, the optimal length of the tabu list L(n) for TSAT is [370]:L(n) = 0:01875n+ 2:8125:(7.3)Furthermore, they noted that a slight departure from the optimal length leads to acorresponding graceful degradation of the performance of TSAT. A more importantdistance from this optimal length leads to a dramatic performance degradation.7.10. Local Search for DNF formulas. Using the well-known DeMorganlaws, we can obtain an unconstrained optimization model, the SAT4 model, forDNF formulas [207, 213]: With SAT4, a CNF formula(x1 + �x2) (�x1 + x2 + �x4) (x2 + �x3)can be transformed into a DNF formula:�x1x2 + x1�x2x4 + �x2x3.For the transformed formula, the objective is to determine whether there exists anassignment where all clauses are falsi�ed. That is, to solve (4.9).A number of local search algorithms were developed for DNF formulas. Exceptfor di�erent de�nition and evaluation schemes in the objective function, they havesimilar structures as in CNF local search algorithms. In SAT1:4 [207], one of theearly DNF local search algorithms, the objective function is de�ned as the numberof satis�able DNF terms. Our goal here is to reduce the objective function to zero.Experimental results indicate that DNF local search algorithms are faster thanCNF local search algorithms.



48 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH7.11. A Historical Note. Early work in constraint satisfaction, simulatedannealing, and complexity study contributed to the development of local searchalgorithms for the SAT problem (see Sections 7.3, 7.4, and 7.5, and Figure 19). A
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SAT2Figure 19. Early development of local search algorithms for SATproblem. There were two major approaches: randomized localsearch (SAT1) and greedy local search (GSAT). The SAT1 wasthe �rst local search algorithm developed for the VLSI engineeringand scheduling applications. The GSAT algorithm was derivedfrom the early local search algorithms for the n-queen problem.special event was the n-queen debate in ACM SIGART Bulletin during 1990 and1992.Early the SAT1 algorithms were applied to solve VLSI circuit design problems.In addition, Gu and Sosi�c implemented the same local search method for the n-queen scheduling problems. Later they published two short papers in SIGARTBulletin [486, 488]. By accident, these two papers triggered a debate. Majordiscussions centered around two questions raised by the SIGART readers.First, Jack Mostow mentioned that Steve Minton at the same time published \ahill-climbing algorithm very similar to Gu's" for the n-queen problem at AAAI'90.He was interested to know the original source of the local search algorithm for then-queen problem. Lewis Johnson reviewed the original local search results for then-queen problem [206] and found that [295]: \It is now clear that the n-queensproblem is a solved problem; in fact, it has been solved for many years."The second question was about local search. In SIGART Bulletin, Vol. 2, No.2, 1991, Bo Bernhardsson showed that the analytical solutions for n-queen problemwas published in 1969. In Jun Gu's reply entitled \On a General Framework forLarge-Scale Constrained Optimization," he explained that the analytical solutionsto n-queen problem only o�er a restricted set of solutions which cannot solve ageneral search problem; the local search algorithm for n-queen can be used to solvegeneral constraint satisfaction problems. This discussion continued in a number ofSIGART issues [296]. In August 1991, M. Valtorta showed more analytical solu-tions to the n-queen problem and the Tower of Hanoi problem [526]. Many readersagreed that the analytical solutions are restricted but some also believed that localsearch can only solve problems like the n-queen. Satis�ability problem is the core ofmany NP-complete problems. So, �nally, Gu wrote a short article \E�cient LocalSearch for Very Large-Scale Satis�ability Problem" [209] and discussed the SAT1algorithms as a general example of local search.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 49During the two-year period, many researchers including Jack Mostow, SteveMinton, Bart Selman, and Dennis Kibler participated in various discussions.8. Global OptimizationLocal search proceeds by taking any solution point that decreases the value ofthe objective function as the next solution point. Since there may be many neigh-boring solution points and a local search does not take into account its neighbors'relative performance to the objective function, a local search may get stuck in alocal minimum or a basin. To escape from such local minima, global search strate-gies need to be developed. One such strategy is the tunneling heuristic discussedin Section 7.6. Another strategy is to select the best neighboring point that yieldsthe minimum value to the objective function. When there is no neighboring pointthat lead to decrease in the objective function, a direction is picked to minimizethe increase in the objective function.Global optimization is concerned with the characterization and computation ofglobal minima and maxima of unconstrained nonlinear functions and constrainednonlinear problems [162, 163, 267, 405]. Global optimization problems belong tothe class of NP-hard problems.The concept of optimization is well rooted as a principle underlying the analysisof many complex decision problems. When one deals with a complex decisionproblem, involving the selection of values to a number of interrelated variables,one should focus on a single objective (or a few objectives) designed to qualifyperformance and measure the quality of the decision. The core of the optimizationprocess is to minimize (or maximize) an objective function subject to constraintsimposed upon values of decision variables in an instance.Most optimization algorithms are designed as an iterative re�nement process.Typically, in seeking a vector that solves an optimization problem, a search algo-rithm selects an initial vector y0 and generates an improved vector y1. The processis repeated to �nd a better solution y2. Continuing in this fashion, a sequence ofever-improving points y0, y1, ..., yk, ..., is found that approaches a solution pointy�. When it is not possible to �nd neighboring points to improve, strategies areapplied to help escape from local minima.There are three aspects in designing global search strategies to solve SAT:� Problem formulations and transformations. As discussed in Section 4.1,there are alternative formulations of an instance of SAT, and global searchstrategies may need to be tailored to the formulation used. In Section 8.1, wepresent the UniSAT model that transforms a SAT formula represented as aninstance of a discrete constrained decision problem in Boolean f0; 1g spaceinto a continuous optimization problem [207, 211, 213]. In Section 8.7, wepresent strategies based on discrete Lagrange multipliers to transform a SATformula into an instance of a discrete constrained optimization problem [538,540]. Other more general transformations are presented in Section 11.� Strategies to select a direction to move. Since a search trajectory lacks globalinformation in a search space, strategies to select a direction to move areeither steepest descent or hill climbing. A steepest-descent approach choosesthe direction with the maximum gradient. A hill-climbing approach, onthe other hand, chooses the �rst point in the neighborhood of the currentpoint that reduces the objective function. For large formulas, hill-climbing



50 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHmethods are much faster than steepest descent because they descend in the�rst direction, rather than the best direction, that leads to improvement.� Strategies to help escape from local minima. Many possible strategies havebeen studied in the past. These include local handlers that use a combina-tion of restarts, backtracking and random swaps (see Section 7.3 and [207,221, 209, 227, 210]), Morris' \break-out" strategy [388], Wah and Shang'sDiscrete Lagrangian Method (DLM) [538, 540], Glover and Hansen's tabulist [199, 239], stochastic methods such as simulated annealing (SA) [308,74], and genetic algorithms (GA) [253, 377]. In Section 8.8, we examinethe e�ects of some of these strategies.8.1. UniSAT: Universal SAT Input Models. In UniSAT models, we ex-tend discrete search space x 2 f0; 1gn into real space y 2 En, so that each solutionpoint and the objective function can be characterized quantitatively. Furthermore,by encoding the solution of a SAT formula into the objective function, a directcorrespondence between the solutions of the SAT formula and the global minimumpoints of the objective function can be established. Subsequently, the SAT formulais transformed into an instance of an unconstrained global optimization problemon En.In UniSAT models, using the universal DeMorgan laws, all Boolean _ and ^connectives in CNF formulas are transformed into � and + of ordinary additionand multiplication operations, respectively. The true value of the CNF formula isconverted to the 0 value of the objective function. Given a CNF formula F fromf0; 1gn to f0; 1g with m clauses C1; : : : ; Cm, we de�ne a real function f(y) from Ento E that transforms the SAT into an unconstrained global optimization problem:miny2En f(y)(8.1)where f(y) = mXi=1 ci(y):(8.2)A clause function ci(y) is a product of n literal functions qi;j(yj) (1 � j � n):ci = nYj=1 qi;j(yj):(8.3)In the UniSAT5 model [207, 209, 213]qi;j(yj) = 8<: jyj � 1j if literal xj is in clause Cijyj + 1j if literal �xj is in clause Ci1 if neither xj nor �xj is in Ci(8.4)and in the UniSAT7 model [207, 211, 209, 213]:qi;j(yj) = 8<: (yj � 1)2 if xj is in clause Ci(yj + 1)2 if �xj is in clause Ci1 if neither xj nor �xj is in Ci(8.5)The correspondence between x and y is de�ned as follows (for 1 � i � n):xi =8<: 1 if yi = 10 if yi = �1undefined otherwise



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 51Clearly, F has value true i� f(y) = 0 on the corresponding y2 f�1; 1gn.The UniSAT5 model on real space is a direct extension of the discrete SAT4model on Boolean space. A model similar to UniSAT5 was proposed independentlyin the neural network area [291]. A signi�cant di�erence between the neural net-work model and UniSAT5 is their e�ciency and practical applicability. The neuralnetwork model can only be handled by traditional nonlinear programming methodsthat are extremely slow [291], whereas UniSAT5 can be easily solved in conjunctionwith the local search approach by simple discrete accounting techniques [207, 213].The UniSAT models transform SAT from a discrete, constrained decision prob-lem into an unconstrained global optimization problem [207, 211, 209, 213]. Agood property of the transformation is that UniSAT models establish a correspon-dence between the global minimumpoints of the objective function and the solutionsof the original SAT formula. A CNF F has value true if and only if f(y) takes theglobal minimum value 0 on the corresponding solution y�.Following the above formulation, with the UniSAT5 and UniSAT7 models, aCNF F (x1 _ �x2) ^ (�x1 _ x2 _ x3)is translated intof(y) = jy1 � 1jjy2 + 1j+ jy1 + 1jjy1 � 1jjy3 � 1jand f(y) = (y1 � 1)2(y2 + 1)2 + (y1 + 1)2(y1 � 1)2(y3 � 1)2,respectively.The solution of the SAT formula corresponds to a set of global minimumpointsof the objective function. Finding a true value of F is equivalent to �nding a falsevalue, i.e., 0, of f(y).The translation of SAT formulas into nonlinear programs is quite di�erent fromthe integer programming approach described in the next section. In the integerprogramming approach, one views a SAT formula as an instance of the 0/1 IntegerProgramming problem and tries solving its Linear Programming relaxation [35,258, 259, 285, 303, 301, 548]. If the solution is non-integer, one rounds o� thevalues to the nearest integers and checks whether the solution corresponds to asolution of the original formula. If the rounded o� values do not correspond to asolution, one computes another solution of the linear programming problem.8.2. A Global Optimization Algorithm for solving SAT. Many familiesof unconstrained global optimization algorithms for the UniSAT problem have beendeveloped [207, 211, 213]. SAT6.0, a basic global optimization algorithm, is shownin Figure 20. To start, procedure obtain a SAT instance() initializes a (given orgenerated) SAT instance. An objective function, f , is formulated according to agiven UniSAT model. The SAT formula thus becomes a minimization problem tothe objective function. To begin, procedure select an initial solution() selects aninitial starting point y0 2 En. The corresponding value of the objective function,f(y0), is evaluated by function evaluate object function().The optimization process is an iterative minimization to the objective function.Function test min() tests if the value of the objective function can be minimized. Ifthis is true, the minimization operation is performed by procedure perform min(),



52 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHprocedure SAT6.0 ()begin/* initialization */obtain a SAT instance();y0 := select an initial solution();f(y0) := evaluate object function(y0);/* search */k := 0;while not(solution testing()) dofor some yi(k)s 2 ykbegin/* minimizer */if test min(f(yi(k)s)) thenbeginyk+1 := perform min(f(yi(k)s));f(yk+1) := evaluate object function();endif close to solution() then x := approximate(yk+1 );end;/* local handler */if local then local handler();k := k + 1;end;end;Figure 20. SAT6.0: A general global optimization algorithm forthe satis�ability problem.followed by evaluate object function() that updates the value of the objective func-tion. Procedures test min(), perform min(), and evaluate object function() are usu-ally performed together without distinction. Depending on the global optimizationstrategy, the objective function can be minimized in one or up to n dimensions.Methods capable of optimizing f in one dimension include line search, coordinatedescent, and coordinate Newton's methods. Methods that optimize f in more thanone dimensions include the steepest descent methods, multi-dimensional Newton'smethods, and many others.As the iterative improvement progresses, a global minimum point may be ap-proached gradually. The closeness between the present solution point and the globalminimum solution point can be tested by solution-point testing or objective-valuetesting. Procedure close to solution() performs closeness testing. If the presentsolution point is su�ciently close to a global minimum point, procedure approx-imate() performs the round-o� operation that converts a solution point y in realspace En to a solution point x in Boolean space f0; 1gn which may be a solutionof the original SAT formula. Procedure solution testing() takes the solution gener-ated from procedure approximate() and substitutes it into the given CNF formulato verify its correctness.In practice, the search process could be stuck at a locally optimum point. Toimprove the convergence performance of the algorithm, one or more local handlers



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 53Procedure SAT14:5 ()begin/* initialization*/y := initial vector();local := search := 0; limit := bn log n;/* search */while (f(y)� 1 and local � limit) dobeginold f := f(y); search := search+ 1;/* minimizer */for i := 1 to n dominimize f(y) with respect to yi;/* local handler */if (f(y)=old f or (search > b0 log n and f(y)� 1)) thenbeginy := initial vector();search := 0; local := local+ 1;end;end;if f(y) < 1 then y� := round o�(y) else y� := enumerate();end;Figure 21. SAT14.5: A global optimization algorithm for theUniSAT5 problem.may be added. One e�ective local handler in SAT6 is to negate the truth values ofup to n variables.Any existing unconstrained global optimization methods can be used to solvethe UniSAT problems (see textbooks and literature). So far many global opti-mization algorithms have been developed [207, 211, 213]. These include the basicalgorithms, steepest descent methods, modi�ed steepest descent methods, Newton'smethods, quasi-Newton methods, descent methods, cutting-plane methods, conju-gate direction methods, ellipsoid methods, homotopy methods, and linear program-ming methods. In each algorithm family, di�erent approaches and heuristics can beused to design objective functions, select initial points, scramble the search space,formulate higher-order local handlers, deect descent directions, utilize parallelism,and implement hardware architectures to speed up computations.8.3. A Discrete Global Optimization Algorithm. Although nonlinearproblems are intrinsically more di�cult to solve, an unconstrained optimizationproblem is conceptually simple and easy to handle. Many powerful solution tech-niques have been developed to solve unconstrained optimization problems, whichare based primarily upon calculus and simple accounting, rather than upon al-gebra and pivoting, as in the Simplex method. Based on a coordinate descentmethod [359], Gu has recently given a simple algorithm, the SAT14:5 algorithm[213, 214], for the UniSAT5 problem (see Figure 21). The kernel of SAT14:5 is adiscrete minimizer that minimizes objective function f by the discrete coordinatedescent method.Given a function f on En, the SAT14:5 algorithm initially chooses a vector yfrom En and then minimize function f with respect to variables yj (1 � j � n) in



54 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHminimizer until f < 1. Since each variable yj appears in one clause function ci atmost once, function f(y) can be expressed asf(y) = ajjyj � 1j+ bj jyj + 1j+ djfor (1 � j � n), where aj, bj, and dj are local gain factors that are independentof yj . They can be computed in O(ln) time. Therefore, f(y) takes its minimumvalue with respect to yj at point either yj = 1 or yj = �1. Thus, the minimizeroptimizes function f as follows: if aj � bj then set yj equal to 1; otherwise set yjequal to �1.In practice, before f < 1, the algorithm could be stuck at a local minimumpoint. To overcome this problem, a simple local handler is added. The localhandler simply generates a new initial vector y to start an independent search. Inthe SAT14.5 algorithm, if the objective function f can no longer be reduced orafter b0 logn (b0 is a constant, see [213, 214]) iterations of the while loop f is stillat least one, then the local-handler is called.8.4. A Continuous Global Optimization Algorithm. Based on a contin-uous coordinate descent method [359], Gu, Huang and Du have recently developedthe SAT14:7 algorithm for solving UniSAT7 problems on En [213]. For the objec-tive function described in the UniSAT7 input model, if only one variable, e.g., xi,is selected for optimization, thenF (xi) = ai(xi � 1)2 + bi(xi + 1)2 + ci(8.6)where ai, bi, and ci are constants that can be computed in O(ml) time. Here, F (xi)can be minimized at: xi = ai � biai + bi :(8.7)8.5. CompleteGlobal OptimizationAlgorithms. The SAT14:5, SAT14:6,and SAT14:7 algorithms are incomplete algorithms. In order to achieve high com-puting e�ciency and to make them complete algorithms, we combine in SAT14:11to SAT14:20 global optimization algorithms with backtracking/resolution proce-dures [207, 213]. Therefore, these algorithms are able to verify satis�ability aswell as unsatis�ability. Figure 22 gives a typical backtracking global optimizationalgorithm.For small and medium size problems, backtracking is able to verify unsatis�a-bility quickly for certain classes of formulas but is slow when it comes to verifyingsatis�ability, as all possible resolutions need to be tried out before concluding thatthe inference relation holds or that the input formula is satis�able. From our ex-perience, a combined global optimization algorithm with backtracking/resolutionprocedures would perform well for certain classes of satis�able and unsatis�ableformulas.Recently some researchers investigated the number of solutions of SAT formu-las. Extending Iwama's work [281], Dubois gave a combinatorial formula com-puting the number of solutions of a set of any clauses [148]. He and Carlier alsostudied the mathematical expectation of the number of solutions for a probabilisticmodel [149]. For an incomplete SAT algorithm, the number of solutions can havea strong e�ect on its computing e�ciency. For a complete SAT algorithm, how-ever, the number of search levels plays a crucial role. In SAT14:11 to SAT14:20



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 55Procedure SAT14.11 ()begin/* initialization */get a SAT instance();x0 := select an initial point();f := evaluate object function(x0 );/* backtracking with global optimization */x� := backtracking(x0 );end;Procedure backtracking(xi )begin/* global optimization assigns v to xi */v := global optimization();xi := v;Vi := Vi � fvg;/* append variable xi to the partial path */path[xi] := i;if path broken then backtracking;if solution found then return x�;else backtracking(next xi);end;Figure 22. SAT14.11: a complete global optimizationalgorithmwith backtracking.algorithms, the number of solutions is an important strategy to interplay globaloptimization and backtracking/resolution procedures [212, 213].8.6. Continuous Lagrangian-Based Constrained Optimization Algo-rithms. In previous subsections, we have discussed unconstrained (discrete or con-tinuous) formulations of SAT problems based on optimizing a single unconstrainedobjective function. To avoid getting trapped in local minima, algorithms for solv-ing these problems must have strategies to escape from local minima. Some ofthese strategies, such as random restarts and tunneling, move the search to a newstarting point and start over. In the process of doing so, vital information obtainedduring the descent to the current local minimum may be lost. Other strategiesmay rely on an internal or an external force to bring the search trajectory out of alocal minimum. Although they work well for continuous problems, they may havedi�culty in dealing with SAT problems whose objective values are integers.One way to bring a search out of a local minimumis to formulate a SAT problemas a constrained optimization problem as shown in (4.10) and (4.16). By using theforce provided by the violated constraints, the search trajectory can be brought outof a local minimum. One way to implement this idea is compute the sum of theconstraints weighted by penalties and to update the penalties continuously duringthe search. The di�culties with this approach lies in the choice of the properpenalties. A more systematic approach is to use a Lagrangian formulation. In thisand the next subsections, we show two Lagrangian formulations of SAT problems,one in the continuous space and the other in the discrete space.



56 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHAs indicated in (4.16), a SAT problem can �rst be transformed into a continuousconstrained optimization problem.miny2En F (y) = mXi=1 ci(y)(8.8) subject to ci(y) = 0 8i 2 f1; 2; : : :;mgwhere y = (y1; y2; : : : ; yn), and ci(y) is de�ned in (4.12) and (4.13) and repeatedas follows. ci(y) = nYj=1 qi;j(yj)qi;j(yj) = 8<: (1� yj)2 if xj in Ciy2j if �xj in Ci1 otherwiseHere, F (y) is a scalar di�erentiable function that takes the norm of its argumentso that F (y) = 0 i� ci(y) = 0 for all i.There are three advantages in reformulating the original discrete unconstrainedproblem into a continuous constrained problem. First, a continuous objective func-tion may smooth out local minima in the discrete space, allowing global/local searchmethods to bypass these local minima in the continuous space. Second, a continu-ous objective value can indicate how close the constraints are being satis�ed, henceproviding additional guidance in leading to a satis�able assignment. Third, whenthe search is stuck in a local minimum and some of the constraints are violated,the violated constraints can provide a force to lead the search out of the local min-imum. This is more e�ective than restarting from a new starting point, as localinformation observed during the search can be preserved.Active research in the past two decades has produced a variety of methodsfor �nding global solutions to nonconvex nonlinear optimization problems [508,267, 163, 240, 405, 377]. In general, transformational and non-transformationalmethods are two approaches in solving these problems.Non-transformational approaches include discarding methods, back-to-feasible-region methods, and enumerative methods. Discarding methods [277, 377] dropsolutions once they were found to be infeasible, and back-to-feasible-region meth-ods [299] attempt to maintain feasibility by reecting moves from boundaries ifsuch moves went o� the current feasible region. Both of these methods have beencombined with global search and do not involve transformation to relax constraints.Last, enumerative methods [267] are generally too expensive to apply except forproblems with linear objectives and constraints, and for bilinear programming prob-lems [26].Transformational approaches, on the other hand, convert a problem into an-other form before solving it. Well known methods include penalty, barrier, andLagrange-multiplier methods [359]. Penalty methods incorporate constraints intopart of the objective function and require tuning penalty coe�cients either beforeor during the search. Barrier methods are similar except that barriers are set up toavoid solutions from going out of feasible regions. Both methods have di�cultieswhen they start from an infeasible region and when feasible solutions are hard to�nd. However, they can be combined with other methods to improve their solutionquality.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 57In Lagrangian methods, Lagrange variables are introduced to gradually resolveconstraints through iterative updates. They are exact methods that optimize theobjective using Lagrange multipliers to meet the Kuhn-Tucker conditions [359].Eq. (8.8) can be reformulated using Lagrange multipliers into the following uncon-strained problem.L(y; �) = F (y) + �T c(y) (Lagrangian function)(8.9) L(y; �) = F (y) + jjc(y)jj22 + �T c(y) (Augmented Lagrangian function)(8.10)where c = (c1(y); c2(y); : : : ; cm(y)), and �T is the transpose of the set of Lagrangemultipliers. The augmented Lagrangian formulation is often preferred because itprovides better numerical stability.According to classical optimization theory [359], all the extrema of (8.10),whether local or global, are roots of the following sets of equations.5yL(y; �) = 0 and 5�L(y; �) = 0(8.11)These conditions are necessary to guarantee the (local) optimality to the solutionof (8.8).Search methods for solving (8.10) can be classi�ed into local and global al-gorithms. Local minimization algorithms, such as gradient-descent and Newton'smethods, �nd local minima e�ciently and work best in uni-modal problems. Globalmethods, in contrast, employ heuristic strategies to look for global minima and donot stop after �nding a local minimum [406, 508, 359]. Note that gradients andHessians can be used in both local and global methods [508].Local search methods can be used to solve (8.11) by forming a Lagrangiandynamic system that includes a set of dynamic equations to seek equilibrium pointsalong a gradient path. These equilibrium points are called saddle-points of (8.11),which correspond to the constrained minima of (8.8). The Lagrangian dynamicsystem of equations are as follows.dy(t)dt = �5yL(y(t); �(t)) and d�(t)dt = 5�L(y(t); �(t))(8.12)Optimal solutions to the continuous formulation are governed by the SaddlePoint Theorem which states that y� is a local minimum to the original problemde�ned in (8.8) if and only if there exists �� such that (y�; ��) constitutes a saddlepoint of the associated Lagrangian function F (y; �). Here, a saddle-point (y�; ��) ofLagrangian function F (y; �) is de�ned as one that satis�es the following condition.F (y�; �) � F (y�; ��) � F (y; ��)(8.13)for all (y�; �) and all (y; ��) su�ciently close to (y�; ��).There are four advantages in using a Lagrangian formulation to solve con-strained optimization problems.� Saddle points of (8.11) can be found by local gradient descent/ascent meth-ods de�ned in (8.12). The �rst equation in (8.12) has a minus sign thatoptimizes the original variables along a descending path, whereas the sec-ond equation optimizes along an ascending path. Alternatively, (8.12) canbe considered as a global search algorithm that has a local-search componentbased on a descent algorithm in the original variable space. When the searchreaches a local minimum, the search is brought out of the local minimumus-ing the weights imposed by its Lagrange multipliers. This mechanism allowsthe search to continue in its present trajectory without any breaks.



58 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH� Lagrangian search is similar to penalty-based methods in the sense that theLagrange variables are increased like penalties when constraints are violated.However, it is more general than penalty-based methods because the increaseof a Lagrange variable is self-adjusting and is governed by the amount thatthe corresponding constraint is violated.� The search modeled by (8.12) can be started from any starting point andwill continue until a saddle point is found.� Since assignments of y where the constraints in (8.8) are satis�ed are alsoassignments that minimize the objective, saddle points of (8.11) found bysolving (8.12) correspond to satis�able assignments to the original SAT prob-lem.It is important to note out that a Lagrangian search modeled by (8.12) is incom-plete: if it does not �nd a solution in a �nite amount of time, it does not provewhether the original SAT problem is satis�able or not. Hence, in�nite time will berequired to prove unsatis�ability.Unfortunately, continuous gradient-based local search methods for solving (8.12)are very time consuming. Our experience [81] indicates that continuous descentmethods are several orders of magnitude more complex than discrete descent meth-ods. For instance, it takes over one hour of CPU time on a Sun SS10 workstationto solve a problem with 200 variables and 60 constraints. Consequently, continuousformulations are not promising in solving large SAT problems. In the next subsec-tion, we extend continuous Lagrangian methods to discrete Lagrangian methods.Surprisingly, discrete methods work much better and can solve some benchmarkproblems that cannot be solved by other local/global search algorithms.8.7. Discrete Lagrangian-BasedConstrainedOptimizationAlgorithms.To overcome the computational complexity of continuous Lagrangian methods whilepreserving their bene�ts, we show in this subsection a discrete constrained formu-lation of a SAT problem and its solution using a discrete Lagrangian method. Thediscrete Lagrangian method is extended from the theory of continuous Lagrangianmethods.Recall (4.10) in Section 4.1 the following discrete constrained formulation of aSAT problem. miny2f0;1gn N (y) = mXi=1 Ui(y)(8.14) subject to Ui(y) = 0 8i 2 f1; 2; : : : ;mg:Without going into all the details [538], the continuous Lagrangian methodcan be extended to work on discrete problems. The discrete Lagrangian functionfor (8.14) is de�ned as follows.L(y; �) = N (y) + �TU (y)(8.15)where y 2 f0; 1gn, U (y) = (U1(y); : : : ; Um(y)) 2 f0; 1gm, and �T is the transposeof � = (�1; �2; : : : ; �m) that denotes the Lagrange multipliers. (Note that �i canbe continuous variables.)In a de�nition similar to that in (8.13), a saddle point (y�; ��) of L(y; �)in (8.15) is de�ned as one that satis�es the following condition.L(y�; �) � L(y�; ��) � L(y; ��)(8.16)



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 591. Set initial x randomly by a �xed random seed2. Set initial � to be zero3. while x is not a solution, i.e., N(x) > 04. update x: x � x��xL(x; �)5. if condition for updating � is satis�ed then6. update �: � � �+ c� U(x)7. end if8. end whileFigure 23. Generic discrete Lagrangian algorithm A for solvingSAT problems.for all � su�ciently close to �� and for all y whose Hamming distance between y�and y is 1.Similar to (8.12), the Discrete Lagrangian Method (DLM) for solving SAT prob-lems can be de�ned as a set of di�erence equations,yk+1 = yk ��yL(yk; �k)(8.17) �k+1 = �k + U (yk);(8.18)where �yL(y; �) is the discrete gradient operator with respect to y such that�yL(y; �) = (�1; �2; � � � ; �n) 2 f�1; 0; 1gn, Pni=1 j�ij = 1, and (y � �yL(y; �)) 2f0; 1gn. Informally, �y represents all the neighboring points of y.8.8. An Implementation of a Basic Discrete Lagrangian Algorithm.Figure 23 shows the pseudo code of A, a generic discrete Lagrangian algorithmimplementing (8.17) and (8.18). It performs descents in the original variable spaceof y and ascents in the Lagrange-multiplier space of �. In discrete space, �yL(y; �)is used in place of the gradient function in continuous space. We call one iterationas one pass through the while loop.In the following, we describe some of the considerations in implementing DLMA. (a) Initial Points and Restarts (Lines 1-2). DLM is started from either theorigin or from a random initial point generated by calling drand48() using a �xedrandom seed 101. Further, � is always set to zero. The �xed initial points allowthe results to be reproducible easily.(b) Descent and Ascent Strategies (Line 4). There are two ways to calculate�yL(y; �): greedy and hill-climbing, each involving a search in the range of Ham-ming distance one from the current y (assignments with one variable ipped fromthe current assignment y).In a greedy strategy, the assignment leading to the maximum decrease in theLagrangian-function value is selected to update the current assignment. Therefore,all assignments in the vicinity need to be searched every time, leading to computa-tion complexity ofO(m), where m is the number of variables in the SAT problem. Inhill-climbing, the �rst assignment leading to a decrease in the Lagrangian-functionvalue is selected to update the current assignment. Depending on the order of searchand the number of assignments that can be improved, hill-climbing strategies aregenerally less computationally expensive than greedy strategies.A comparison of the two strategies show that hill-climbing is orders of magni-tude faster and results in solutions of comparable quality.



60 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH(c) Conditions for updating � (Line 5). The frequency in which � is updateda�ects the performance of a search. The considerations here are di�erent from thoseof continuous problems. In a discrete problem, descents based on discrete gradientsusually make small changes in L(y; �) in each update of y because only one variablechanges. Hence, � should not be updated in each iteration of the search to avoidbiasing the search in the Lagrange-multiplier space of � over the original variablespace of y.Experimental results show that � should be updated only when �xL(x; �) = 0.At this point, a local minimum in the original variable space is reached, and thesearch can only escape from it by updating �. This strategy amounts to puredescents in the original y variable space, while holding � constant, until a localminimum is reached.Note that this strategy is similar to Morris' \break out" strategy [388] andSelman and Kautz's GSAT [473, 474] that applies adaptive penalties to escapefrom local minima. One problem that is overlooked in these strategies is the growthof penalty terms. In solving a di�cult SAT problem, penalty terms may grow tobecome very large as the search progresses, causing large swings in the objectivefunction and delaying convergence of the search. Solutions to this issue are discussednext.(d) Amount of update of � (Line 6). A parameter c controls the magnitude ofchanges in �. In general, c can be a vector of real numbers, allowing non-uniformupdates of � across di�erent dimensions and possibly across time. For simplicity,c = 1 has been found to work well for most of the benchmarks tested. However,for some larger and more di�cult problems, a smaller c can result in shorter searchtime.The update rule in Line 6 results in nondecreasing �. This is true because U (x)is either 0 or 1: when a clause is not satis�ed, its corresponding � is increased; andwhen a clause is satis�ed, its corresponding � is not changed. In contrast, in ap-plying Lagrangian methods to solve continuous problems with equality constraints,the Lagrange multiplier �i of constraint gi(x) = 0 increases when gi(x) > 0 anddecreases when g(x) < 0.When there is no mechanism to reduce the Lagrange multipliers, they can growwithout bound, causing large swings in the Lagrangian-function value and makingthe search terrain more rugged. Although this strategy does not worsen the searchtime for most of the benchmark problems tested, � values can become very large astime goes on for a few di�cult problems requiring millions of iterations. When thishappens, the search has di�culty in identifying an appropriate direction to move.This situation is illustrated in the �rst two graphs of Figure 24 that show thebehavior of DLM when it was applied to solve one of the more di�cult DIMACSSAT benchmark problems. Here, the search is stuck in a sub-optimal basin in thespace of the objective function where the number of unsatis�ed clauses uctuatesaround 20. Since the search terrain modeled by L becomes more rugged as theLagrange multipliers increase, the search will have di�culty to escape from thisregion.To overcome this problem, � should be reduced periodically. For instance, inthe last two graphs of Figure 24, � was scaled down by a factor 1.5 every 10,000iterations. This strategy, when combined with other strategies to be discussed next,restricts the grown of Lagrange multipliers, leading to the solution of some of themore di�cult benchmark problems.
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(e) (f)With tabu list of 30, at moves of limit 50, and periodic scaling of � by a factor of1.5 every 10,000 iterationsFigure 24. Execution pro�les of \g125-17," one of the di�cultDIMACS benchmark problem. Figures (a), (c), and (e) plot theLagrangian-function values and the number of unsatis�ed clausesversus the number of iterations. Figures (b), (d), and (f) plot theminimum, average and maximum values of Lagrange multipliers.



62 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH(e) Plateaus in the Search Space. In binary problems like SAT, a search may�nd a very small subset of variables that can lead to no degradation in the objectivefunction. Flipping variables in this small subset successively may likely lead to acycle in the search space. To avoid such an undesirable situation, variables thathave been ipped in the recent past can be stored in a tabu list [199, 239] and willnot be ipped until they are out of the list.Further, for large SAT problems formulated as discrete optimization problems,the search may encounter large and at, but suboptimal, basins. Here, gradientsin all directions are the same and the search may wander forever. The discretegradient operator �yL(y; �) may have di�culties in basins/plateaus because itonly examines adjacent points of L(y; �) that di�er in one dimension. Hence, itmay not be able to distinguish a plateau from a local minimum.One way to escape is to allow uphill moves. For instance, in GSAT's randomwalk strategy [475], uphill walks are allowed based on probability p. However, thechance of getting a sequence of uphill moves to get out a deep basin is small sinceeach walk is independent.There are two e�ective strategies that allow a plateau to be searched.(a) Flat-move strategy. We need to determine the time to change � when thesearch reaches a plateau. As indicated earlier, updating � when the search is ina plateau changes the surface of the plateau and may make it more di�cult forthe search to �nd a local minimum somewhere inside the plateau. To avoid thissituation, a strategy called at move [538] can be employed. This allows the searchto continue for some time in the plateau without changing �, so that the searchcan traverse states with the same Lagrangian-function value. How long shouldat moves be allowed is heuristic and possibly problem dependent. Note that thisstrategy is similar to Selman's \sideway-move" strategy [474].(b) Tabu list. This search strategy aims to avoid revisiting the same set ofstates in a plateau. In general, it is impractical to remember every state the searchvisits in a plateau due to the large storage and computational overheads. A tabulist [199, 239] can be kept to maintain the set of variables ipped in the recentpast and to avoid ipping a variable if it is in the tabu list.The last four graphs of Figure 24 illustrate the performance of DLM whenthe search maintains a tabu list of size 30, when it is allowed to stay in a basinwithin 50 moves (at-move limit), and when all Lagrange multipliers are peri-odically scaled down. These graphs show signi�cant reduction in the growth ofLagrangian-function values and Lagrange multipliers.By using these strategies, DLM can solve successfully many of the hard prob-lems in the DIMACS benchmark suite [538]. These results are presented in Sec-tion 13.8.9. Convergence Property and Average Time Complexity. Gu, Guand Du [218] have analyzed the convergence ratios of three basic methods: thesteepest descent method, Newton's method, and the coordinate descent method forobjective function f de�ned in the UniSAT7 input model. They prove that, subjectto certain conditions [359], the steepest descent method has a linear convergenceratio [(A � a)=(A + a)]2 < 1, Newton's method has a convergence ratio of ordertwo, and the coordinate descent method has a convergence ratio �1� aA(n�1)� < 1,where A � a > 0 are the largest and smallest eigenvalues of the Hessian matrixH(y), respectively.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 63From these convergence properties, Gu, Gu, and Du roughly estimate that, sub-ject to certain conditions [359], the UniSAT7 problem can be solved in O(log(n+m)) iterations by the steepest descent method and can be solved in O(m log(n+m))iterations by the coordinate descent method, on the assumption that the algorithmis not stuck at a local minimum point.Gu and Gu have made some preliminary analysis of the typical time complexityof some global optimization SAT algorithms [214]. It shows that, the SAT14:5algorithm, with probability at least 1�e�n, �nds a solution within k = O(n(logn)2)iterations of the while loop for a randomly generated satis�able CNF formula withl � 3 and m=n � �2l=l, where � < l is a constant. From this and the fact thatthe run time of procedure enumerate() is O(2n), the typical time complexity of theSAT14:5 algorithm is(1� e�n)O(n(logn)2(lmn)) + e�nO(2n) = O(ln(n logn)2):Clearly, the SAT14:5 algorithm can give an answer to an unsatis�able CNF for-mula in O(2n) time. 9. Integer Programming MethodIn this section, we �rst give an integer program (IP) formulation of SAT. Thenwe describe some traditional techniques of using the integer programming approachto solve SAT.9.1. An Integer Programming Formulation for SAT. In order to repre-sent SAT inputs in the framework of mathematical programming, we identify logicvalue true with integer 1 and falsewith �1. Similar in UniSATmodels (Section 8.1),all Boolean _ and ^ connectives are transformed into + and � of ordinary additionand multiplication operations, respectively. Using a standard transformation, theith clause Ci is transformed into a linear inequality [303, 301]:nXj=1 qi;j(wj) � 2� jCij(9.1)where qi;j(wj) = 8<: w if literal xj is in clause Ci�w if literal �xj is in clause Ci0 if neither xj nor �xj is in Ci(9.2)where wj is the jth integer variable.To restrict wj = �1, j = 1; 2; :::n, requires that extra constraints be addedto insure that each wj be in the closed interval [�1; 1], i.e., �1 � wj � 1 forj = 1; 2; :::n.Following the above formulation, for example, a CNF F(x1 _ �x2) ^ (�x1 _ x2 _ x3) ^ (x2 _ x3)is translated into w1 �w2 � 0�w1 + w2 + w3 � �1w2 +w3 � 0



64 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHso an integer programming formulation is obtained for SAT as: �nding wj = �1,such that 0@ 1 �1 0�1 1 10 1 1 1A0@ w1w2w3 1A � 0@ 0�10 1A(9.3)or 0@ �1 1 01 �1 �10 �1 �1 1A0@ w1w2w3 1A � 0@ 010 1A(9.4)While the Simplex method is e�ective for solving linear programs (LP), there isno single technique that is fast for solving integer programs. Therefore, approachesdeveloped try to solve the integer program as an integer linear program (ILP).7 Ifthe solution is non-integer, one rounds o� the values to the nearest integers andchecks whether this corresponds to a solution of the original input. If the roundedo� values do not correspond to a solution, adds a new constraint and computes asolution of the modi�ed linear program. So far most methods developed to solvethe integer programs for SAT indirectly work on the corresponding integer linearprograms.Researchers have observed that the optimal integer-programming solution isusually not obtained by rounding the linear-programming solution although this ispossible in certain cases (see Section 10). The closest point to the optimal linear-program may not even be feasible. In some cases, the nearest feasible integer pointto the linear-program solution is far removed from the optimal integer point. Thus,when using an integer linear program to solve the integer program for SAT, it isnot su�cient simply to round linear-programming solutions.In the following sections, we describe existing integer programming methods tosolve SAT.9.2. Linear Program Relaxation. A basic method to solve an integer pro-gram is the linear program relaxation. In this approach, the LP relaxation isachieved by replacing xi 2 f0,1g with 0 � xi � 1. The LP relaxation can be solvede�ciently with some sophisticated implementations of Dantzig's Simplex method,such as MINOS [389], or some variations of Karmarkar's interior point method[305].Hooker early reported that by solving a linear programming of SAT, one fre-quently produces an integer solution [259]. Kamath et al. used MINOS 5.1 tosolve linear programming relaxation [303, 301]. They tried some small SAT in-puts and found that the Simplex method failed to �nd integral solutions to thelinear programming relaxations in majority of instances tested.9.3. Branch and Bound Method. Branch-and-bound is essentially a strat-egy of \divide and conquer." It is a straightforward and the most successful wayto solve the integer programming problem. The idea is to systematically partitionthe linear-programming feasible region into manageable subdivisions and make as-sessments of the integer-programming problem based on these subdivisions. Whenmoving from a region to one of its subdivisions, we add one constraint that is notsatis�ed by the optimal linear-programming solution over the parent region. So the7An integer linear program (ILP) is a linear program further constrained by integralityrestrictions.
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2 x >02x <0-2Figure 25. An example of a branch-and-bound tree.linear programs corresponding to the subdivisions can be solved e�ciently. In gen-eral, there are a number of ways to divide the feasible region, and as a consequencethere are a number of branch-and-bound algorithms.We show the basic procedures of branch-and-bound with a simple exampleshown in Figure 25. The method starts with the fractional solution given by itscorresponding LP relaxation. Then a variable of fractional solution is selected. Forexample, let x1 be a variable, and set x1 � 0 as an additional constant; i.e., branchon x1 with constraint x1 � 0. Resolve the LP relaxation with this augmented con-straint. If it still produces a non-integer solution, branch on another non-integervariable, say x2, �rst with constraint x2 � 0, and resolve the LP with extra con-straint x1 � 0 and x2 � 0. This process continues until solving the augmented LPyields an integer solution, i.e., an incumbent solution, so there is no need to branchfurther at that node. Since we do not know this to be optimal, a backtracking pro-cedure is required to search with extra constraints x1 � 0 and x2 � 0 and resolvethe augmented LP and continue the process until an integer solution is obtained.The above process produces a binary tree as shown in Figure 25. In this way,we implicitly exhaust all possibilities and conclude with an optimal solution. Notethat each time we obtain an incumbent solution we get a new upper bound on theminimum value of the objective function. It at the same node the LP yields anobjective function with value that exceeds the best upper bound obtained so far,then we can fathom that node, since any solution obtained at its successors canonly be worse.9.4. Cutting-Plane Method. Unlike partitioning the feasible region intosubdivisions, as in branch-and-bound approaches, the cutting-plane algorithm solvesinteger programs by modifying linear-programming solutions until an integer solu-tion is obtained. It works with a single linear program, which it re�nes by addingnew constraints. The new constraints successively reduce the feasible region untilan integer optimal solution is found.The idea of the cutting plane method can be illustrated from a simple geomet-ric interpretation (Figure 26). The feasible region for the integer program, i.e., aninteger polytope, consists of those integer lattice points satisfying all constraints. Acut is an inequality satis�ed by all the feasible solutions of the integer program. A
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*Figure 26. An illustration of the cutting-plane method.cutting plane is a hyperplane de�ned by that inequality and it conicts with the so-lution X� of the linear-programming relaxation. The cutting plane passes betweenX� and the integer polytope and cuts o� a part of the relaxed polytope containingthe optimal linear-programming solution X� without excluding any feasible integerpoints. After the cut, the resulting linear program is solved again. If the optimalvalues for the decision variables in the linear program are all integer, they are op-timal; otherwise, a new cut is derived from the new optimal linear-programmingtableau and appended to the constraints.In practice, the branch-and-bound procedures almost always outperform thecutting-plane algorithm. Nevertheless, the algorithm has been important to theevolution of integer programming. Historically, it was the �rst algorithm developedfor integer programming that could be proven to converge in a �nite number ofsteps. In addition, even though the algorithm generally is considered very inef-�cient, it has provided insights into integer programming that have led to other,more e�cient algorithms.9.5. Interior Point Method. The most important advance in linear pro-gramming solution techniques was recently introduced by Karmarkar [305]. Asshown in Figure 27, compared to the Simplex method which jumps from a cor-ner point to another corner point of the LP polytope until the optimal solutionis found, Karmarkar's algorithm constructs an ellipsoid inside the polytope anduses nonlinear transformations to project better solution guesses in the interior ofthe polytope. Unlike the Simplex method which approaches the optimal solutionindeed by step-by-step searching and has an exponential worst-case complexity,Karmarkar's algorithm has been proven to be a polynomial time algorithm.To apply Karmarkar's algorithm on integer programming, �rst the 0/1 integerprogram is transformed to a �1 integer program. Then the potential functionx2 is used, and obviously the optimal integer solution to the original IP problem
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Figure 27. The basic ideas of the Simplex method and Kar-markar's method.is at the point that the potential function achieves a maximum. However, usingKarmarkar's algorithm on integer programming may get stuck at a local minimum,i.e., it does not guarantee to �nd the optimal solution by projection. Therefore, itis an incomplete algorithm.9.6. Improved Interior Point Method. It is expected that a sequence ofinterior points wk+1 = wk + �4w�(9.5)is generated such that the potential function in Karmarkar's algorithm is minimized.It is crucial to determine the descent direction4w� of the potential function aroundwk and the step size �.In the original Karmarkar's algorithm, the step size � is assumed with (0,1].They used � = 0:5 in their experiments to solve SAT inputs. If the potentialfunction is well represented by the quadratic approximation around the given point,then if we move along the Newton direction and have the appropriate values forcertain parameters, we will reach the minimum; otherwise, recall that the step sizeis chosen so that it reaches a minimum of the objective function on that line of thegiven descent direction. So there is no reason to restrict � within (0,1].This suggests the necessity to use line search to choose optimal step size. Fol-lowing this idea, Shi, Vannelli, and Vlach have recently given an improved interiorpoint algorithm [479]. In their algorithm, the step size � is determined by a golden-section search [359]. Experiments show signi�cant improvements on Karmarkar'salgorithm. 10. Special Subclasses of SATCertain subclasses of SAT that are known to be solved in polynomial time havebeen identi�ed and explored. There are at least three reasons for discussing suchsubclasses in this section. First, a given formula can be preprocessed and examinedto determine whether it is a member of a polynomial-time solvable subclass of SAT.



68 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHIf so, a special, fast algorithm can be brought to bear on the formula. Second, aportion of a given formula may a member of such a subclass and its solution maymake solving the given formula easier. Third, study of such subclasses reveals,in part, the nature of \easy" SAT formulas. On the other hand, as reported inSection 12, studies of random formulas indicate that these known classes containonly a small fraction of the formulas that can be solved rapidly.Below, we consider some of the more notable polynomial-time subclasses. Whenwe say apply unit resolution we mean apply the unit clause rule to exhaustion.10.1. 2-SAT. A CNF formula containing clauses of one or two literals only issolved in linear time by applying unit resolution [18, 155].10.2. Horn and Extended Horn Formulas. A CNF formula is Horn ifevery clause in it has at most one positive literal. This class is widely studied, inpart because of its close association with Logic Programming. Horn formulas canbe solved in linear time using unit resolution [144, 279, 469].The class of extended Horn formulaswas introduced by Chandru and Hooker [79]who were looking for conditions under which a Linear Programming relaxationcould be used to �nd solutions to propositional formulas. A theorem of Chan-drasekaran [84] characterizes sets of linear inequalities for which 0-1 solutions canalways be found (if one exists) by rounding a real solution obtained using an LPrelaxation. Extended Horn formulas can be expressed as linear inequalities that be-long to this family of 0-1 problems. The following graph-theoretic characterization,taken from [504], is simpler than the LP characterization.Let C be a clause constructed from a variable set V , and let R be a rooteddirected tree with root s (i.e., a directed tree with all edges directed away froms) and with edges uniquely labeled with variables in V . Then C is extended Hornw.r.t. R if the positive literals of C label a (possibly empty) dipath P of R, and theset of negative literals in C label an edge-disjoint union of dipaths Q1; Q2; :::; Qt ofR with exactly one of the following conditions satis�ed:1. Q1; Q2; :::; Qt start at the root s.2. Q1; Q2; :::; Qt�1, (say), start at the root s, and Qt and P start at a vertexq 6= s (if P is empty, Qt can start from any vertex).A clause is simple extended Horn w.r.t. R if it is extended Horn w.r.t. R and onlyCondition 1 above is satis�ed. A CNF formula is (simple) extended Horn w.r.t. Rif each of its clauses is (simple) extended Horn w.r.t. R. A formula is (simple)extended Horn if it is (simple) extended Horn w.r.t. some such rooted directed treeR. One tree R for a given Horn formula is a star (one root and all leaves with anedge for each variable in the formula). Hence, the class of extended Horn formulasis a generalization of the class of Horn formulas.Chandru and Hooker [79] showed that unit resolution alone can determinewhether or not a given extended Horn formula is satis�able. A satisfying truth as-signment for a satis�able formula may be found by applying unit resolution, settingvalues of unassigned variables to 1/2 when no unit clauses remain, and rounding theresult by a matrix multiplication [79]. This algorithm cannot, however, be reliablyapplied unless it is known that a given formula is extended Horn. Unfortunately,the problem of recognizing extended Horn formulas is not known to be solved inpolynomial time.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 6910.3. Formulas from Balanced (0;�1) Matrices. The class of formulasfrom balanced (0;�1) matrices, which we call balanced formulas here, has beenstudied by several researchers (see [100] for a detailed account of balanced matri-ces and a description of balanced formulas). The motivation for this class is thequestion, for SAT, when do Linear Programming relaxations have integer solutions?Express a CNF formula of m clauses and n variables as an m � n (0;�1)-matrix M where the rows are indexed on the clauses, the columns are indexed onthe variables, and a cell M (i; j) has the value +1 if clause i has variable j as anunnegated literal, the value �1 if clause i has variable j as a negated literal, andthe value 0 if clause i does not have variable j as a negated or unnegated literal.A CNF formula is a balanced formula if in every submatrix of M with exactly twononzero entries per row and per column, the sum of the entries is a multiple offour [510].Let a CNF formula be cast, in standard fashion, as a linear programmingproblem of the form fx : Mx � 1 � n(M ); 0 � x � 1g where n(M ) is a columnvector whose components are the number of negated literals in clauses at the rowscorresponding to those components. If M is balanced, then for every submatrix Aof M , the solution to fx : Ax � 1 � n(A); 0 � x � 1g is integral [100]. From thisit follows that balanced formulas may be solved in polynomial time using linearprogramming.Balanced formulas have the property that, if every clause contains more thanone literal, then for every variable v there are two satisfying truth assignments: onewith v set to true and one with v set to false. Thus, the following is a simple linear-time algorithm for �nding solutions to known balanced formulas [100]. Apply unitresolution to the given formula. If a clause is falsi�ed, the formula is unsatis�able.Otherwise, repeat the following as long as possible: choose a variable and set itsvalue to true, then apply unit resolution. If a clause becomes falsi�ed, then theformula is unsatis�able, otherwise all clauses have been satis�ed by the assignmentresulting from the variable choices and unit resolution.Unlike extended Horn formulas, balanced formulas are known to be recognizedin polynomial time [100].10.4. Single-Lookahead Unit Resolution. This class was developed as ageneralization of other classes including Horn, extended Horn, simple extendedHorn, and balanced formulas [466]. It is peculiar in that it is de�ned based onan algorithm rather than on properties of formulas. The algorithm, called SLUR,selects variables sequentially and arbitrarily and considers both possible values foreach selected variable. If, after a value is assigned to a variable, unit resolutiondoes not result in a clause that is falsi�ed, the assignment is made permanent andvariable selection continues. If all clauses are satis�ed after a value is assignedto a variable (and unit resolution is applied), the algorithm returns a satisfyingassignment. If unit resolution, applied to the given formula or to both sub-formulascreated from assigning values to the selected variable on the �rst iteration, resultsin a clause that is falsi�ed, the algorithm reports that the formula is unsatis�able.If unit resolution results in falsi�ed clauses as a consequence of both assignments ofvalues to a selected variable on any iteration except the �rst, the algorithm reportsthat it has given up.



70 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHA formula is in the class SLUR if, for all possible sequences of selected variables,SLUR does not give up on that formula. SLUR takes linear time with the modi-�cation, due to Truemper [513], that unit resolution be applied simultaneously toboth branches of a selected variable, abandoning one branch if the other �nishes�rst without falsifying a clause. Note that due to the de�nition of this class, thequestion of class recognition is avoided.All Horn, extended Horn, and balanced formulas are in the class SLUR. Thus,an important outcome of the results on SLUR is the observation that no specialpreprocessing or testing is needed for a variety of special subclasses of SAT whenusing a reasonable variant of the DPL algorithm.A limitation of all the classes above is that they do not represent many inter-esting unsatis�able formulas. There are several possible extensions to SLUR whichimprove the situation. One is to add a 2-SAT solver to the unit resolution step.This extension is at least able to handle all 2-SAT formulas which is somethingSLUR cannot do. This extension can be elegantly incorporated into SLUR dueto an observation of Truemper: \Whenever SLUR completes a sequence of unitresolutions, and if at that time the remaining clauses are nothing but a subset ofthe original clauses (which they would have to be if all clauses have at most twoliterals), then e�ectively the SLUR algorithm can start all over. That is, if �xingof a variable to both values leads to an empty clause, then the formula has beenproved to be unsatis�able. Thus, one need not augment SLUR by the 2-SAT algo-rithm, because the 2-SAT algorithm (at least one version of it) does exactly whatthe modi�ed SLUR does." Another extension of SLUR is to allow a polynomialnumber of backtracks, giving up if at least one branch of the DPL tree does notterminate at a leaf where a clause is falsi�ed. Thus, unsatis�able formulas withshort DPL trees can be solved. However, such formulas are uncommon.10.5. q-Horn Formulas. This class of propositional formulas was developedby Boros, Crama, Hammer, Saks, and Sun in [44] and [43]. We choose to charac-terize the class of q-Horn formulas as a special case of monotone decomposition ofmatrices [511, 513]. As in the case of balanced (0;�1) matrices, express a CNFformula of m clauses and n variables as an m�n (0;�1)-matrixM where the rowsare indexed on the clauses, the columns are indexed on the variables, and a cellM (i; j) has the value +1 if clause i has variable j as an unnegated literal, the value�1 if clause i has variable j as a negated literal, and the value 0 if clause i does nothave variable j as a negated or unnegated literal. In the monotone decompositionof M , columns are scaled by �1 and the rows and columns are partitioned intosubmatrices as follows: �A1 j E D j A2�where the submatrix A1 has at most one +1 entry per row, the submatrix Dcontains only �1 or 0 entries, the submatrix A2 has no restrictions other than thethree values of �1, +1, and 0 for each entry, and the submatrixE has only 0 entries.If the monotone decomposition ofM is such that A2 has no more than two nonzeroentries per row, then the formula represented by M is q-Horn.A recent result by Truemper [513] can be used to �nd a monotone decomposi-tion for a matrix associated with a q-Horn formula in linear time. Once a q-Hornformula is in its decomposed form it can be solved in linear time as follows. Treat



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 71submatrix A1 as a Horn formula and solve it in linear time using a method suchas in [144, 279, 469] which returns a minimum, unique truth assignment for theformula with respect to true. If the Horn formula is unsatis�able then the q-Hornformula is unsatis�able. Otherwise, the returned assignment satis�es A1 and someor all rows of D. The set of true variables in every truth assignment satisfyingA1 contains the set of variables true in the returned minimum, unique truth as-signment. Therefore, since elements of D are either 0 or �1, no truth assignmentsatisfying A1 can satisfy any rows of D that are not satis�ed by the minimum,unique truth assignment. Hence, the only way A1 and D both can be satis�ed isif A2, minus the rows collinear with those of D that are satis�ed by the minimum,unique truth assignment, can be satis�ed. Since A2 represents a 2-SAT formula,any subset is also 2-SAT and can be solved in linear time. If the answer is unsat-is�able then the q-Horn formula is unsatis�able; if the answer is satis�able thensuch a satisfying assignment plus the minimum, unique truth assignment returnedearlier are a solution to the q-Horn formula.The developers of the class q-Horn also o�er a linear-time solution to formulasin this class. The main result of [43] is that a q-Horn formula can be recognized inlinear time. See [42] for a linear-time algorithm for solving q-Horn formulas.Formulas in the class q-Horn are thought to be close to what might be regardedas the largest easily de�nable class of polynomially solvable propositional formulasbecause of a result due to Boros, Crama, Hammer, and Saks [44]. Let fv1; v2; :::; vngbe a set of Boolean variables, and Pk and Nk, Pk\Nk = ; be subsets of f1; 2; :::; ngsuch that the kth clause in a CNF formula is given by _i2Pkvi _i2Nk �vi. Constructthe following system of inequalities:Xi2Pk �i + Xi2Nk(1� �i) � Z; (k = 1; 2; :::;m); and0 � �i � 1; (i = 1; 2; :::; n):where Z 2 R+. If all these constraints are satis�ed with Z � 1 then the formulais q-Horn. On the other hand, the class of formulas such that the minimum Zrequired to satisfy these constraints is at least 1 + 1=n�, for any �xed � < 1, isNP-complete. For more information on the subject of q-Horn formulas will appearin [513].10.6. Renamable Formulas. Suppose clauses of a CNF formula F are con-structed from a set V of variables and let V 0 � V . De�ne switch(F ; V 0) to be theformula obtained as follows: for every v 2 V 0, reverse all unnegated occurrences ofv in F to negated occurrences and all negated occurrences of v to unnegated occur-rences. For a given formula F , if there exists a V 0 � V such that switch(F ; V 0) isHorn, extended Horn, etc., then the formula is said to be renamable Horn, extendedHorn, etc., respectively.The algorithms given above work even if a given formula is renamable to aformula in the class for which they apply. Additional classic references to Hornrenamability are [339] and [19].It is interesting to note that there exist formulas in the class of SLUR formulasthat are not members of either renamable extended Horn formulas or balancedformulas [466].



72 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH10.7. Formula Hierarchies. Some sets of clauses not falling into one of thepolynomially solvable classes de�ned above may be reduced to \equivalent" for-mulas that are members of at least one of these classes. If such reductions aree�cient, these sets can be solved in polynomial time. Such reductions can takeplace in stages where each stage represents a class of polynomially solved formulas,and lower stages represent classes of perhaps lower time complexity than classesrepresented by higher stages. The lowest stage is a polynomially solved base class,such as one of the classes above.An example of such a hierarchy is found in [182]. The base class, at stage0, is Horn. Consider a stage 1 formula that is not Horn. By de�nition of thehierarchy, there is a variable v which, if set to true, leaves a set of non-satis�edclauses and non-falsi�ed literals that is Horn. If this Horn formula is found to besatis�able, we can conclude the original formula is. Otherwise, setting v to falseleaves a set of clauses that is a stage 1 formula (empty formulas are consideredto belong to every stage). Thus, the above process can be repeated (on stage 1formulas) to exhaustion. Since it takes linear time to solve Horn formulas and inthe worst-case a linear number of Horn systems must be considered, the process forsolving formulas at stage 1 has quadratic complexity. The above concept can beexpanded to higher stages to form a hierarchy: at stage i, when setting v to true, asub-formula is at stage i� 1, and when setting v to false, a sub-formula is at stagei. Thus, solutions to stage i formulas are carried out recursively leading to a timecomplexity that is bounded by mi. An alternative way to solve formulas at stage iin the hierarchy is to use i-resolution (resolution is not applied unless at least oneclause has at most i literals) [62].The only remaining question is to determine whether a given formula is a stagei formula. This can be done with a bottom-up approach described in [182].For other information on such Hierarchies see, for example, [113, 184].10.8. Pure Implication Formulas. Pure implication formulas are de�nedrecursively as follows:1. A variable is a pure implication formula.2. If F1 and F2 are pure implication formulas then (F1 ! F2) is a pure impli-cation formula.Eliminating parentheses on right to left associativity, a pure implication formulacan be written F1 ! F2 ! ::: ! Fp ! z where z is a variable. We call the zvariable of a formula the right-end variable.The satis�ability problem is trivial for a pure implication formula but the prob-lem of falsi�ability is NP-complete even if all variables except the right-end variableoccur at most twice in the formula. Furthermore, the complexity of determiningfalsi�ability seems to increase at least exponentially with the number of occurrencesof the right-end variable [249]; this yields a hierarchy of classes starting from linear-time solvability and going through NP-completeness. This is possibly due to thefact that the expressive power of pure implication formulas at the lower levels ofthe hierarchy is extremely limited. Despite this lack of expressibility, it seems thatthe lower levels of the hierarchy are incomparable with other special polynomial-time-solvable classes such as 2-SAT and SLUR. To make this more concrete, de�nea class of CNF formulas related to pure implication formulas and call it PICNF(k).



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 73A formula in the class PICNF(k) consists only of the following kinds of clausegroups:1: (�x�1 _ �x�2 _ x�3) ^ (x�1 _ x�2) ^ (x�1 _ �x�3 )2: (�x�1 _ �x�2 _ �x�3) ^ (x�1 _ x�2) ^ (x�1 _ x�3 )3: (x�1 )where the number of type 2 groups is �xed at k and each variable occurs at mosttwice in a PICNF(k) formula. The falsi�ability question for a given pure implica-tion formula with right-end variable occurring at most k times is identical to thesatis�ability question for a formula in class PICNF(k). If all but one totally negatedclauses are removed from such a formula, a complete set of at most n partial truthassignments, each of which can be extended to satisfying truth assignments, canbe constructed in linear time. Doing this for each totally negated clause resultsin k such sets of partial truth assignments. Multiplying these sets to �nd consis-tent assignments spanning all k sets can determine whether the given formula issatis�able. This can be accomplished in O(nk) time, matching the complexity offalsi�ability of pure implication formulas. A recent result [172] shows this can bereduced to O(kkn2) time. We remark that the problem of determining satis�abilityfor formulas of the union of the classes PICNF(k), for all k, is NP-complete.The class PICNF(k), k �xed, is incomparable to other polynomially solvedclasses discussed above. For example, there are SLUR CNF formulas that are notrepresented as PICNF(k) formulas and vice versa (particularly many unsatis�ablePICNF(k) formulas are not SLUR CNF formulas). Also, although it is easy toconstruct a PICNF(k) formula that is renamable Horn (and therefore q-Horn), eventhe PICNF(1) set (�x1_�x2_x3)^(x1_x2)^(x1_�x3)^(�x1_�x3_�x4)^(x1_x3)^(x1_x4)is not q-Horn.PICNF(k) is interesting because, for k �xed, it contains formulas that are notin other polynomial-time solvable classes and the severe lack of expressibility ofPICNF(k) formulas may be exploited to assist complexity investigations of classhierarchies. In particular, why should the hierarchies discussed above have O(jF jk)complexity when a complexity of O(2kjF j), say, is not inconsistent with any devel-oped theory? PICNF(k) may be useful in answering this question.10.9. Non-linear Formulations. An optimization problem with 0-1 vari-ables can be reduced to a constrained nonlinear 0-1 program. Such programs areexpressed as follows: maxx2f0;1gn F (x) = pXk=1 ckTk(10.1)subject to gi(x) = piXk=1aikTik < bi; i = 1; 2; : : : ;mwhere Tk = Yj2Nk xj; Nk � N = f1; 2; : : : ; ng; k = 1; 2; : : : ; p(10.2)



74 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHand Tik = Yj2Nik xj; Nik � N; k = 1; 2; : : : ; pi; i = 1; 2; : : : ;mProblems in propositional logic, originating, for example, in graph theory, can beexpressed this way by associating 0 to false, 1 to true, 1� a to �a, and a � b to a^ b.Several methods for solving the above formulation have been proposed [235,237]. In some restricted cases these methods have polynomial time complexity.Thus, the rich literature on this subject can be carried over to the domain ofpropositional satis�ability to provide low complexity algorithms for SAT undercorresponding conditions.A notable example involves functions for which the co-occurrence graph is apartial k-tree [107]. The DNF formulation expressed by equations (4.7)-(4.8) isin the form of equations (10.1) and (10.2). Let F (x) be such a DNF function.The co-occurrence graph of F (x) has a vertex set corresponding to the variablesfx1; x2; : : : ; xng with an edge between xi and xj (i 6= j) if these variables occursimultaneously in at least one product term of F (x). A simple, undirected graph Gis a k-tree if there is an ordering fx�1 ; x�2 ; : : : ; x�ng of all its vertices such that, forall j = 1; 2; : : : ; n�k, in the subgraph Gj induced by vertices fx�j ; x�j+1 ; : : : ; x�ngthe vertex x�j has degree k and its neighbors induce a complete subgraph of Gj.A partial k-tree is any graph obtained by deleting edges from a k-tree. If the co-occurrence graph of F (x) is a partial k-tree, then F (x) can be solved in lineartime [107]. Since the maximization problem for DNF formulas is the same as theminimization problem for CNF formulas (by using 1�x for literal x and x for literal�x), CNF formulas can be solved in linear time if their corresponding co-occurrencegraph is a partial k-tree.Another example is a linear time algorithm for determining whether a 2-SATformula has exactly one solution, that is, uniquely solvable. The question of deter-mining unique solvability is a tough one in general and it is even hard to determinewhether linear time algorithms exist for special subclasses of SAT8. However, oneis presented for 2-SAT in [236] using the framework of pseudo-boolean functions(that is, of the form (10.1) and (10.2)). Finally, we mention the result of [106]where a polynomial time algorithm for producing a parametric representation of allsolutions to a 2-SAT formula is presented.10.10. Nested and Extended Nested Satis�ability. The complexity ofnested satis�ability has been studied in [314]. That study was inspired by Lichten-stein's theorem of planar satis�ability [347]. Index all variables in a CNF formula.A clause C1 straddles a clause C2 if the index of a literal of C2 is strictly betweentwo indices of literals of C1. Two clauses overlap if they straddle each other. A for-mula is nested if no two clauses overlap. The problem of determining satis�abilityfor nested formulas, the clauses ordered so that clause Ci does not straddle clauseCj when i < j, can be solved in linear time [314].An extension to nested satis�ability has been proposed in [238]. We prefer toskip the details and just mention that this extension can be recognized and solvedin linear time. For details, the reader is referred to [238].8An almost linear algorithm for unique Horn-SAT has been obtained by Berman et al. [29]and improved into a linear time algorithm by a slight modi�cation due to Pretolani [421] (Minouxdeveloped a quadratic time algorithm in [378])



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 7511. Advanced TechniquesIn this section, we describe a number of advanced optimization techniques forsatis�ability testing. They have been used in practical engineering applications andhave proven to be e�ective for certain classes of SAT.11.1. General Boolean Representations. In practice, many problems inintegrated circuit design, such as logic veri�cation, test pattern generation, asyn-chronous circuit design, logic optimization, sequential machine reduction, and sym-bolic simulation, can be expressed as Boolean satis�ability problems with arbitraryBoolean functions. Each representation has corresponding algorithms for satis�a-bility testing. A Boolean representation a�ects the performance of Boolean ma-nipulation methods accordingly. Thus, e�cient representation and manipulationof Boolean functions is crucial to many practical applications. Many di�erent rep-resentations have been proposed for manipulating Boolean functions. However,many Boolean functions derived from practical circuit design problems su�er froman exponential size in their representations, making satis�ability testing infeasible.Most SAT algorithms work on conjunctive normal form (CNF) formulas, i.e.,input formulasmust be expressed as a product of sums of literals. The CNF formulais a canonical formula used in most analytical studies but is not an e�cient represen-tation in practical application problems. Many real engineering design problems usenon-clausal representations rather than the CNF formula. Algorithms in this cat-egory may be regarded as non-clausal inference algorithms for satis�ability testing[215]. Compared to CNF formulas, a non-clausal, general Boolean representationis much more compact and e�cient, although the transformation of an arbitrarynon-clausal expression into CNF can be done in polynomial time by introducingnew variables. This will result in clause-form representation of substantially largersizes [192, 415]. While this is not critical in complexity theory, it will have seriousimpact in solving practical application problems.In practice, a SAT algorithm can be made much more e�cient if it worksdirectly on problems represented in a compact number of general Boolean formulasrather than a large collection of CNF clauses. For a non-clausal SAT algorithm, theevaluation of arbitrarily large, complex Boolean functions is a key to its e�ciency[228].The next two subsections describe a sequential and a parallel Boolean repre-sentation and manipulation methods.11.2. Binary Decision Diagram (BDD). Ordered Binary Decision Dia-grams (OBDDs) [59, 60] is an e�cient representation and manipulationmethod forarbitrary Boolean functions. This representation is de�ned by imposing restrictionson the Binary-Decision-Diagram (BDD) representation introduced by Lee [334] andAkers [9], such that the resulting form is canonical. The OBDD representation andits manipulation method are an extremely powerful technique in various practicalapplications. It is particularly useful with formulas where one needs to consider ev-ery solution, such as cases where one must search for optimal solutions. Althoughthe OBDD representation of a function may have size exponential in the numberof variables, many useful functions have more compact representations in practice.A BDD gives a graphical representation of Boolean functions. It is a directedacyclic graph with two types of leaf nodes, 0 and 1. Each non-leaf node is labeledwith a Boolean variable v and has two out-going edges labeled 0 (the left edge) and
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0Figure 28. A simple BDD example for F = (a+ b) � (a+ c).1 (the right edge). A BDD can be utilized to determine the output value of thefunction by examining the input values. Every path in a BDD is unique, i.e., nopath contains nodes with the same variables. This means that if we arbitrarily traceout a path from the function node to the leaf node 1, then we have automaticallyfound a value assignment to function variables for which function will be 1 regardlessof the values of the other variables.Given a simple example Boolean function F = (a + b) � (a + c), the BDD offunction F can be constructed to determine its binary value, given the binary valuesof variables a, b, and c. At the root node of BDD, we begin at the value of variablea. If a = 1, then F = 1 and we are �nished. If a = 0, we look at b. If b = 0,then F = 0 and again we are �nished. Otherwise, we look at c, its value will bethe value of F . The complete BDD for function F is shown in Figure 28, where allthe paths from the root function node F to the leaf node 1 are highlighted. Eachhighlighted path yields a satis�able assignment. For F , the satis�able assignmentsare a = 1, b = �, c = � and a = 0, b = 1, c = 1, where 0�0 denotes a don't careassignment.It is well known that the BDD size for a given function depends on the variableorder chosen for the function (e.g., fa,b,cg in Figure 28). Since the early intro-duction of BDDs, several extensions have been proposed to reduce BDD sizes inpractical applications. In an ordered BDD [59, 60], the input variables are ordered,and every path from the root node to the leaf node visits the input variables in anascending order. In practice, a simple topological based ordering heuristic [363]yields small size BDDs for practical Boolean instances. A reduced ordered BDDis an ordered BDD where each node represents a unique logic function. Bryantshowed that the reduced ordered BDD of a Boolean function is well-de�ned and isa canonical representation of the function; i.e., two functions are equivalent if theirreduced ordered BDDs are isomorphic [59, 60].The DBDD is e�cient to search for optimal solutions for arbitrarily compli-cated Boolean expressions. In VLSI circuit design, many practical problems requirethe enumeration of all possible assignments for a given Boolean formula. The bestassignment that yields the minimumcost (e.g., minimal circuit structure, minimumchip area, and maximum circuit speed) is then selected from these possible assign-ments. Since most algorithms for satis�ability testing are designed for �nding one



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 77truth assignment, they are impractical for selecting an optimal assignment. BDDsare very useful in such situations, since a simple and incremental enumeration ofall possible paths from the root node to the leaf node 1 yields all the truth as-signments. Thus, once the BDD for a Boolean function has been constructed, it isstraightforward to enumerate all assignments or �nd an optimal solution.The BDD method can e�ectively handle small and medium size formulas. Forlarger size formulas, a partitioning into a set of smaller sub-formulas before applyingthe BDD algorithms has been suggested. This approach works well for asynchronouscomputer circuit design problems [216, 438].11.3. The Unison Algorithms. Based on total di�erential of a Boolean func-tion, the Unison algorithm is capable of evaluating arbitrarily large, complex Booleanfunctions [215, 493, 492]. The Unison algorithm is built with a network of multipleuniversal Boolean elements (UBEs). The topology of the Unison network speci�esthe structure of Boolean functions. By dynamically recon�guring the UBE's func-tionality, Unison is adaptable to evaluate general Boolean functions representingthe SAT/CSP problems.The total di�erential, dF , of a Boolean function F represents the di�erence inthe function value due to the di�erence in input values. For a Boolean functionF (x; y) of two variables, x and y, the total di�erential is calculated from di�erencesin input, dx and dy, as: dF = Fxdx� Fydy � Fxydx dy;(11.1)where � is the Exclusive-OR operation [506]. Let F (x; y) be a Boolean function oftwo dependent variables x and y; i.e., x = G(x1; x2) and y = H(y1; y2). Following(11.1), the total di�erential dF is:dF (G(~x);H(~y)) = Fx dG(x1; x2)� Fy dH(y1; y2)� Fxy dG(x1; x2) dH(y1; y2):(11.2)It can be observed from (11.2) that the value of dF depends on total di�erentialsdG and dH, rather than the function values G(x1; x2) and H(y1; y2). By recursivelyapplying (11.2) to dG, dH, and their dependent variables, the total di�erential dFcan be evaluated based on only total di�erentials of the independent variables (seeFigure 29).The Unison algorithm works in two phases: initialization and evaluation. Theinitialization phase computes partial derivatives that determine the function to beevaluated in the evaluation phase. The partial derivatives are constant during theevaluation phase. The evaluation phase reads input values and computes the �nalresults. The calculation is performed in a bottom{up fashion, starting from theindependent variables.A computer word is used to evaluate one Boolean operation, so the code to cal-culate dF would produce only one result. With one computer word, however, thecomputer is able to perform many bitwise AND and bitwise Exclusive-OR opera-tions in one instruction. In Unison algorithm's implementation, we take advantageof this machine feature to increase execution speed and to reduce memory space.In one of our implementations on the NeXT and SUN workstations [492], theUnison algorithm uses 32 bits of a computer word to pack 32 Boolean operations.If the ith bit in each operand is initialized to represent the ith Boolean operation,then the ith bit of dF will have the result of the ith Boolean operation. Each ofthe 32 bitwise operations is independent of the others. And the Unison algorithm
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Figure 29. The relation between total di�erentials.simultaneously evaluates 32 Boolean operations in one machine instruction. Theparallel implementation of the Unison algorithm is straightforward which can beimplemented in any programming language that supports bitwise Boolean oper-ations. Data structures and implementation details of the Unison algorithm arediscussed in [492].The Unison architecture is built with a network of multiple universal Booleanelements (UBEs). The connection topology of the Unison network speci�es thestructure of the Boolean function evaluated by Unison. The structure of Booleanfunctions speci�es the connectivity between Boolean expressions of two variables.Each UBE accomplishes a 2-variable, simple Boolean function in Unison. Theoutputs of two UBEs can be used as inputs to another UBE. This enables theconstruction of a network of UBEs capable of evaluating arbitrarily large, complexBoolean functions. By dynamically recon�guring the UBE's functionality, Unisonis adaptable to the evaluation of di�erent Boolean functions representing SAT/CSPproblems. InUnison architectures, there is essentially no limit on the number of bitsone would like to implement. One can put as many UBE's on a chip as possible aslong as the hardware resource permits. The detailed implementations of the Unisonarchitecture, e.g., its network structure, UBE structures, and two CMOS hardwareimplementations, are described in detail in [493, 492].Combined with parallel evaluation, partial evaluation, and incremental eval-uation techniques, Unison can be incorporated into a variety of search and opti-mization algorithms for satis�ability testing. It is especially important in real-timeapplications where hardware processing with di�erent Boolean functions is required.It provides an e�cient approach for fast non-clausal processing of SAT inputs.11.4. Multispace Search. Many search and optimizationmethods have beendeveloped in combinatorial optimization, operations research, arti�cial intelligence,neural networks, genetic algorithms, and evolution programming. An optimizationalgorithm seeks a value assignment to variables such that all the constraints aresatis�ed and the performance objective is optimized. The algorithm operates bychanging values to the variables in the value space. Because value changing does
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Figure 30. In the value space, a traditional search process(dashed line) cannot pass a \wall" of high cost search states(hatched region). It fails to reach the �nal solution state, F . Amultispace search process (solid lines) scrambles across di�erentsearch spaces. It could bypass this \wall" through the other searchspaces.not a�ect the formula structure and the search space, it is di�cult for a value searchalgorithm to handle the pathological behavior of local minima.Multispace search is a new optimization approach developed in recent years[222, 228, 224]. The idea of multispace search was derived from principles ofnon-equilibrium thermodynamic evolution that structural changes are more funda-mental than quantitative changes, and that evolution depends on the growth of newstructure in biological system rather than just information transmission. A searchprocess resembles the evolution process, and structural operations are important toimprove the performance of traditional value search methods [222, 228, 224].In multispace search, any active component related to the given input structurecan be manipulated, and thus, be formulated as an independent search space. Fora given optimization problem, for its variables, values, constraints, objective func-tions, and key parameters (that a�ect the input structure), we de�ne the variablespace, the value space (i.e., the traditional search space), the constraint space, theobjective function space, the parameter space, and other search spaces, respectively.The totality of all the search spaces constitutes a multispace.The basic idea of multispace search is simple. Instead of being restricted in thevalue space, the multispace is taken as the search space. In the multispace, com-ponents other than value can be manipulated and optimized as well. During thesearch, a multispace search algorithm not only alters values in the value space; asshown in Figure 30, it also walks across the variable space and other active spaces,changes dynamically the input structure in terms of variables, parameters, and



80 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHother components, and constructs systematically a sequence of structured, interme-diate instances. Each intermediate instance is solved by an optimization algorithm,and the solution found is used as the initial solution to the next intermediate in-stance. By interplaying value optimization with structured operations, multispacesearch incrementally constructs the �nal solution to the search instance througha sequence of structured intermediate instances. Only at the last moment of thesearch, the reconstructed instance structure approaches the original instance struc-ture, and thus the �nal value assignment represents the solution of the given searchinput.Multispace search algorithm combines traditional optimization algorithms withstructural multispace operations. In each search step, multispace search performstwo fundamental operations: a traditional value search and the structural recon�g-uration of the intermediate instance during each individual search phase. Accordingto the active event in the scrambling schedule [222, 223], the search process en-ters a speci�ed search space and performs structural operations to the intermediateinstance structures, followed by a traditional value search that optimizes the con-structed intermediate instance. The resulting intermediate solution is then used asthe initial instance to the next phase of multispace search.The major structural operations in multispace search [222, 223] include mul-tispace scrambling [223, 228], extradimension transition (e.g., air bridge, real di-mension, and extra dimension) [212, 214, 213], search space smoothing [225],multiphase search [488, 491, 212, 436, 545, 208, 219], local to global passage[208, 208], tabu search [199], and perturbations (e.g., jumping, tunneling, climb-ing, and annealing) [210, 211, 212, 213, 308].In the next two subsections we describe two preprocessing methods for satis�a-bility testing in multispace search: partitioning input size and partitioning variabledomain.11.5. Partitioning to Reduce Input Size. Due to excessive computingtime, a large size NP-hard problem is di�cult to solve. Partitioning a large inputinto a set of smaller sub-instances may permit e�cient solution of the input. Thereare two partitioning methods, each consisting of a partitioning, a conquer, andan integration procedure. For constructive partitioning (e.g., divide and conquer),partitioning, conquer, and integration procedures are well de�ned and easy to im-plement. For destructive partitioning, it is di�cult to design the partitioning andintegration procedures.We give an industrial case study that requires a SAT solver. The SAT solveruses an e�cient input size partitioning as a preprocessing step. This problem arisesin asynchronous circuit design. Asynchronous circuits are indispensable in manylow power and high performance digital computer systems. Due to their importantapplications in mobile, portable, and military communication systems, there hasbeen great interest in the automated design and synthesis of asynchronous circuits[89, 330, 350, 528]. The design of asynchronous control and interface circuits,however, has proven to be an extremely complex and error-prone task. The coreproblem in asynchronous circuit synthesis can be formulated as an instance ofSAT to satisfy the complete state coding (CSC) constraints, i.e., the SAT-Circuitproblem [529].In this practical application problem, an optimal solution with minimal circuitlayout area is sought. An incomplete SAT solver such as local search, unfortunately,



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 81does not guarantee an optimal solution, and therefore, is not applicable. Previousresearchers used e�cient resolution and branch-and-bound procedures to handlethe SAT-Circuit problem. For most asynchronous circuit design problems, unfortu-nately, they were not able to �nd an optimal solution and, for di�cult asynchronouscircuit design problems, they could not locate even one solution.Gu and Puri have recently developed a partitioning technique for satis�abilitytesting and applied it to asynchronous circuit design [223, 216, 438]. The parti-tioning preprocessor, at the beginning, decomposes a large size SAT formula thatrepresent the given asynchronous circuit design into a number of smaller, disjointSAT formulas. Each small size SAT formula can be solved e�ciently. Eventually,the results of these sub-formulas are integrated together and contribute to the so-lution of the original formula. This preprocessor avoids the problem of solving verylarge SAT formulas and guarantees to �nding one best solution in practice. Thispartitioning preprocessing is destructive since, during the search, extra variablesare introduced to resolve the critical CSC constraints. Furthermore, they built acomplete, incremental SAT solver based on binary decision diagrams (BDD). Theirsystem is able to �nd an optimal solution to the asynchronous circuit design prob-lem e�ciently.11.6. Partitioning Variable Domains. A variable domain contains valuesto be assigned to variables. The size of a variable domain, along with the number ofvariables, determine the computational complexity of an optimization algorithm.From a theoretical point of view, even a small reduction in the variable domainwould result in signi�cant improvements in computing e�ciency. It is, however,di�cult to make use of variable-domain reduction techniques in solving optimizationproblems. Recently, Wang and Rushforth have studied mobile cellular networkstructures and developed a novel variable-domain reduction technique for channelassignment in these networks [545, 546].The rapid growth of mobile cellular communication services has created a directconict to the limited frequency spectrum. Channel assignment is an importanttechnique to the e�cient utilization of frequency resource for mobile cellular com-munications. Among several channel assignment problems, the �xed channel as-signment (FCA) is essential to the design and operation of cellular radio networks.An FCA algorithm assigns frequency channels to calls such that the frequency sep-aration constraints are satis�ed and the total bandwidth required by the systemis minimized. By encoding the constraints into clauses, the problem becomes aninstance of SAT. For a given cellular communication system, there are numerousways to assign a channel to a call request. An optimal channel assignment decisioncan signi�cantly improve the cellular system capacity without requiring extra cost.For a �xed mobile cellular system, the capacity of the cellular system is mainlydetermined by the performance of the channel assignment algorithms.Wang and Rushforth's channel assignment algorithm was developed based onthe structure of cellular frequency reuse patterns. Using their variable domainpartitioning technique, they partition a mobile cellular network with larger variabledomain into two networks: a minimum network with a �xed and small variabledomain (due to the known frequency reuse patterns) and a di�erence network withan even smaller variable domain [545, 546]. Channels are assigned separately tothe minimumnetwork and to the di�erence network, and the superposition of thesetwo assignments constitutes an assignment to the original network.



82 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHBecause this variable domain partitioning approach decomposes an instanceof a channel assignment problem with a large number of assignments into twoseparate channel assignment sub-instances with considerably smaller numbers ofassignments, it dramatically reduces the computational complexity and thus thecomputing e�ciency for solving given inputs, in addition to the signi�cantly im-proved solution results. This novel partitioning technique can be applied to solvethe channel assignment problem with any existing channel assignment algorithms.During numerous channel assignment experiments, this algorithm outperformed allavailable algorithms for solving the practical channel assignment problem bench-marks. Experimental evidence suggests that this partitioning approach is bothe�cient and e�ective.11.7. Parallel SAT Algorithms and Architectures. Many parallel SATand CSP algorithms have been developed. In a recent survey [215], the followingparallel algorithms for solving SAT were discussed:1. 1987: Parallel DP algorithms2. 1986: Parallel discrete relaxation chips3. 1987: Parallel backtracking architecture4. 1987: Parallel local search algorithm5. 1989: Parallel interior point method6. 1990: Parallel, di�erential, non-clausal inference7. 1991: Parallel �� relaxation8. 1991: Parallel global optimization9. 1992: Neural network approach10. 1993: Multiprocessor local searchSome of ideas of these techniques are described in this paper.For the following two reasons, algorithms running on loosely-coupled, multipro-cessor parallel computers o�er limited performance improvements for solving SAT.First, in the worst case, a SAT algorithmmay su�er from the exponential growth incomputing time. In order to solve a SAT formulas e�ectively, we will need a com-puter that has much larger speedup than what is available today. This computerwill require the integration of at least a few million processors in a tightly-coupledmanner. This is infeasible in the current computer system integration technology.Second, as the processor gets much faster, the communication overhead amongprocessors in a parallel machine becomes a bottleneck, which may often take 70 % toeven 90 % of the total computing time [293]. Ideally one would expect the speedupon a parallel computer to increase linearly with increasing number of processors.Due to serious o�-processor communication delays, after certain saturation point,adding processors does not increase speedup on a loosely-coupled parallel machine.Processor communication delay also makes process creation, process synchroniza-tion, and remote memory access very expensive in a loosely-coupled multiprocessorsystem. For this reason, the speedup on a multiprocessor is normally less thanthe number of processors used. With simple SAT algorithms, however, speedup issometimes greater than the number of processors [386]. Variable settings similarto those that are already known not to lead to a solution are also unlikely to leadto a solution. The obvious methods of parallelizing simple SAT algorithms breakup the tendency to search similar settings at about the same time.From our experience, tightly coupled parallel computing, which e�ectively re-duces o�-processor communication delays, is a key to the parallel processing of



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 83SAT formulas [215]. In order to use a tightly-coupled parallel architecture for SATcomputation, one must map a computing structure to the input structure and mustreduce the total number of sequential computing steps through a large number ofsymmetrical interactions among simple processors [206, 215]. Several di�erent ap-proaches, e.g., special-purpose parallel VLSI architectures [226, 227], bit-parallelprogramming on sequential machines [207, 212, 493, 492], and tight programmingon parallel computer systems, are promising alternatives in this direction. Theseapproaches are capable of providing a tight mapping between a formula structureand a computing structure, resulting in faster computation. The computationalpower of these approaches are orders of magnitude greater than standard sequen-tial algorithms running on uniprocessor machines or parallel algorithms running onloosely coupled multiprocessors.Parallel processing does not change the worst-case complexity of a SAT al-gorithm unless one has an exponential number of processors. Parallel processing,however, does delay the e�ect of exponential growth of computing time, allowingone to solve larger size instance of SAT.11.8. TheMulti-SAT Algorithm. The problem structures of real world prac-tical applications vary signi�cantly, making it di�cult to develop an e�cient SATalgorithm to solve a wider range of the practical application problems. Many e�-cient algorithms have been developed for the SAT problem. They each can solvea class of problem instances e�ciently. Backtracking algorithms can handle somesmall size, hard problem instances, providing complete solutions. Local search couldhandle fairly large-size satis�able problem instances quickly. BDD SAT solver isable to solve practical problem instances with performance criteria. Lagrangian-base global search method can provide solutions to a wide range of SAT probleminstances. Problem size and domain partitioning techniques can further enhancethe existing SAT algorithms, so they can solve much larger size practical probleminstances. If we combine the niches of several e�cient algorithms together, theymay handle a much wider range of SAT problem instances e�ciently.Another school of concern for the Multi-SAT algorithm comes from the existingchallenge for SAT algorithm's design and testing. A good local search algorithmconsists of several basic components. These components are sensitive to algorithmparameter setting, algorithm running environment, input size, problem structure,and initial starting points. We will select from various min-conicts heuristics,random value assignment heuristics, random variable selection heuristics, partialrandom variable selection heuristics, multiphase search heuristics, and multispacesearch heuristics. Combined with hundreds of problem instances and initial startingpoints, the process for the design, implementation, and experimentation of thealgorithm is very time-consuming. A Multi-SAT algorithm can relieve the load ofthis task, facilitating quick design and testing of the algorithm.Two algorithm integration approaches (hybrid algorithm and algorithm clus-tering) have been proposed for algorithm integration. In the hybrid algorithm ap-proach, algorithms in di�erent classes are integrated in a single algorithm. Thealgorithm would make use of di�erent algorithmic niches according to some deci-sion procedures. Early examples of this approach include combining local searchwith backtracking [212] and combining global optimizationwith backtracking [206,227, 213]. The e�ectiveness of a hybrid algorithm may be limited due to the over-heads of decision making and algorithmic context switching.
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ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 8512. Probabilistic and Average-Case AnalysisProbabilistic and average-case analysis can give useful insight into the questionof what SAT algorithmsmight be e�ective under certain circumstances. Sometimes,one or more structural properties shared by each of a collection of formulas maybe exploited to solve such formulas e�ciently; or structural properties might forcea class of algorithms to require super-polynomial time. Such properties may beidenti�ed and then, using probabilistic analysis, one may hope to argue that theseproperties are so common for a particular class of formulas that the performanceof an algorithm or class of algorithms can be predicted for most of the formulas inthe class.The main drawbacks of this approach are: 1) some distribution of input formu-las must be assumed and chosen distributions may not represent reality very well; 2)results are usually sensitive to the choice of distribution, unlike results obtained us-ing randomized algorithms; 3) the state of analytical tools is such that distributionsyielding to analysis are typically symmetric with independent components; 4) fewalgorithms have yielded to analysis. Despite these drawbacks, probabilistic resultscan be a useful supplement to worst-case results (which can be overly pessimistic,especially for NP-complete problems) in understanding algorithmic behavior.This section reviews some notable probabilistic and average-case results forcertain SAT algorithms. The results we present are based mainly on two distribu-tions, the l-SAT distribution and average l-SAT distribution (see Section 5), partlybecause these have been the most widely used. Both are distributions over CNFformulas. Since the character of results is di�erent for both distributions, we devoteone subsection to each.12.1. Average l-SAT Model. The parameters of this distribution are thenumber of clauses m, the number of variables n from which clauses are constructed,and the probability p(n;m) that an unnegated variable or negated variable appearsin a given clause (see Section 5.1 for more details). Since variables are placed inclauses independently, it is possible that null clauses, clauses with complementaryliterals (tautological clauses), or unit clauses exist in a random formula. This doesnot mimick reality very well. However, the mathematics associated with average-time analyses for average l-SAT models is usually tractable. It would be straight-forward but tedious to modify average l-SAT calculations to account for no clausesof length 0 or 1, but such results are unknown to us. In addition, tautologicalclauses exist with high probability only over part of the parameter space.Results presented below are asymptotic (that is, they apply when n;m!1).Satis�able and Unsatis�able Formulas. The following results highlightthose regions of the parameter space where random formulas are unsatis�able orsatis�able with high probability. It is easy to see that the average number of lit-erals in a clause is 2pn and the average number of times a variable appears in arandom formula is 2pm. If pn > ln(m), a random truth assignment satis�es arandom formula in probability [165], and if pn = c ln(m) : 1 > c � 1=2, andlimn;m!1m1�c=n1�� < 1, 1 > � > 0, a random formula is satis�able in prob-ability [167]. If pn < ln(m)=2, a random formula contains an empty clause, andtherefore is unsatis�able, in probability. Thus, the only region of the parameter



86 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHspace where random formulas may be di�cult, in a probabilistic sense, is de�nedby pn = c ln(m) : 1 > c � 1=2, limn;m!1m1�c=n1�� =1, 1 > � > 0.Polynomial-Time Solvable Classes. Many of the special polynomial-timesolvable classes discussed in Section 10 can be identi�ed with regions in the param-eter space as well. Here we give some examples taken mainly from [171].If pn < 1=pm1+� : � > 0, a random formula is a Horn formula in probability.That is, all the non-empty clauses are Horn clauses. If pn <pn1��=m : 1 > � > 0,limn;m!1m=n � 1, a random formula is extended Horn in probability. If pn >pn1+�=m : � > 0, a random formula is not extended Horn in probability. Thisimplies, when 2pn!1 (no empty clauses, in probability), the parameter subspacewhere random formulas are usually extended Horn is sharply de�ned. Surprisingly,simple extended Horn formulas are abundant in a relatively small subspace of theparameter space. If pn < 1=pm1+� : � > 0, a random formula is a simple extendedHorn formula in probability but if pn > 1=pm1�� : � > 0, a random formula is notsimple extended Horn, in probability.Random formulas are balanced, in probability, only if pn <pn1��=m : � > 0.Thus, when limn;m!1 m=n � 1, balanced formulas are generated in abundanceover a region of the parameter space that is no larger than the subspace over whichrandom formulas are extended Horn in probability. The same statement is believedto hold when limn;m!1m=n > 1.Weakening SLUR so that it always chooses to expand the true path of a selectedvariable, if possible, the parameter subspace where random formulas can be solvedby SLUR in probability is at least as large as given by the three regions 1) p < 1and pn > 3 ln(m) : limn;m!1m=n > 1; 2) p < 1 : limn;m!1m=n < 1; 3) pn <ln(m)=2. This is because no clauses containing either all negated (pure negativeclause) or all unnegated variables (pure positive clause) are in a random formula,in probability, in region 1) (see Exploitable Properties below); random formulas areextended Horn, or have no pure positive or negative clauses, in probability, in region2); and random formulas contain empty clauses, in probability, in region 3).In summary, the SLUR class, modi�ed as above, dominates nearly the entireparameter space; balanced and extended Horn formulas are frequently generatedonly when either the average number of occurrences of a variable in a formulatends to 0 or random formulas tend to have a large number of empty clauses; Hornformulas and simple extended Horn formulas are commonly generated over a smallportion of the parameter space.Exploitable Properties. If a random formula is in one of the special, polynomial-time solvable subclasses of SAT discussed earlier, it can be dealt with ef-�ciently. The same is true if a random formula has one or more of certain otherexploitable properties. Three of these are described here (taken from [171]).A clause is pure if it contains only negated variables or only unnegated variables.Call a formula that has no pure clauses a non-P-formula. A satisfying truth assign-ment for any non-P-formula can be obtained in linear time. If pn > (1 + �) ln(m) :� > 0, a random formula is a non-P-formula, in probability.A clause is a tautology if, for some variable v, both v and �v are in the clause.Such clauses may be removed from a formula without a�ecting the Boolean functionit expresses. If enough tautological clauses exist in a formula, it is relatively easy to



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 87solve. If p2n > (1+�) ln(m) : � > 0, all clauses of a random formula are tautological,in probability.If allm clauses of a formula contain more than log2(m) literals then the formulamust be satis�able. A random formula has this property, in probability, whenpn > 1:55 log2(m).Average-Case Results. Although the above results show that random for-mulas are e�ciently solved, in probability, over nearly all of the parameter spaceof the average l-SAT model, they do not imply that polynomial-average-time al-gorithms exist over a signi�cant portion of the parameter space. For example, if,out of a set of n100 formulas, n100 � 1 formulas can be solved by algorithm A inO(n) time but one formula requires 2n time using A, then the set is solved byA in polynomial-time, in probability, but the average complexity of A over theset is exponential in n (assuming all formulas are equally likely). Thus, A wouldget \stuck" on the above set of formulas even though it almost always �nds a so-lution to a random formula in linear time. This consideration has motivated theaverage-case analysis of algorithms under the average l-SAT model. The results saythat exploiting some of the above properties individually is not enough to insurepolynomial-time average complexity but, by exploiting certain properties collec-tively, nearly the entire parameter space is covered by a collection of algorithmswith polynomial-average-time complexity. Here we give two examples.Determining unsatis�ability from the existence of an empty clause in a givenformula alone is not strong enough to give polynomial-average-time if pn < ln(m)=2since the probability that an empty clause exists in a random formula does not tendto 1 fast enough. However, the empty clause check can be combined with othermethods to achieve polynomial-average-time complexity. For example, preprocessa given formula by making all unit resolutions and all resolutions involving vari-ables that occur in the formula exactly twice; use backtracking, with the emptyclause check, to �nd solutions to the processed formula. Polynomial-average-timeis achieved when either1. pn < (��1��) ln(m)=(2�): m = n�, � > 1, and, � is such that ��1�� > 0; or2. 2:64(1� e�2�pn(1 + 2�pn)) < �e�2pn : m = �n, � a constant; or3. pn < (1����) ln(m)=�: m = n�, 1 > � > 2=3, and, � is such that 1���� > 0;or4. pn � (ln(m)=4)1=3n2=3��: m = n�, 2=3 � � > 0 [166].This subspace includes nearly all of the half plane pn < ln(m)=2; that is, the regionfor which empty clauses exist, in probability.We remark that the above algorithm �nds all solutions to a given formula.A variant of the DPL algorithm, called probe-order backtracking, that workswell for the half plane pn > ln(m) exploits the preponderance of non-P-formulasthat results from generating formulas in that region [433]. Given formula F , ifan empty clause exists in F , output \unsatis�able." If there is no clause in Fcontaining only unnegated variables, output \satis�able." Otherwise, select a clausein F containing only unnegated variables fv1; v2; :::; vkg. For i = 1; :::; k, set vi to



88 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHtrue, set v1; v2; :::; vi�1 to false, and recursively apply probe-order backtracking.Output \satis�able" if and only if at least one of these invocations has output\satis�able." Probe order backtracking runs in polynomial-average-time when pn >ln(m).Other interesting results are found in [168, 417, 169, 203, 281, 431, 430,425].Average Number of Solutions. In the average l-SAT model, the averagenumber of solutions per formula is approximatelyexp[n ln 2 +m ln(1� e�pn)]:Thus, when m=n and pn are such that the exponent is negative, formulas have veryfew solutions, but when the exponent is positive formulas have many solutions, onaverage. When m=n is below ln(2), the average number of sub-formulas generatedby simple backtracking is about the same as the average number of solutions. Whenm=n is above ln(2), small values of pn still lead to few sub-formulas and large valueslead to a huge number of sub-formulas, but there is an intermediate range of valueswhere the average number of solutions is near zero while the average number ofnodes is an exponential function of n [431].The average-time analysis for backtracking is done for a version of the algorithmthat �nds all solutions. When one wants just one solution, there is no need for thealgorithm to solve the second sub-formula in those cases where the �rst sub-formulahas a solution. So far no analysis has shown just how much time can be savedby stopping early. Since stopping early can have an e�ect only on formulas thathave solutions, the analysis in [431] shows that there is a considerable range of pnvalues where simple backtracking takes exponential average time whether or notthe algorithm stops at the �rst solution.Additional Commentary. An average l-SAT analysis of unit clause back-tracking [425] shows that the conditions under which it is fast or slow are similarto the conditions under which simple backtracking is fast or slow. Again, the an-alyzed version of the algorithm �nds all solutions. However, for moderate valuesof m=n there is a range of pn values where simple backtracking takes exponentialtime but unit clause backtracking takes polynomial time. For small values of m=nunit clause backtracking has no signi�cant advantage because the number of solu-tions controls the running time, and for large values of m=n it has little advantagebecause interesting formulas occur with large pn values, and so unit clauses arerare.The average l-SAT analysis of probe order backtracking shows that, in additionto being fast under conditions where simple backtracking is fast, it is fast undervarious other conditions. It is fast when pn is below 1. When m=n is small, thetypical l-SAT formula does not use most of the variables. Thus, most formulaswith one solution have an exponential number of solutions (one for each setting ofthe unused variables). Simple backtracking takes no advantage of variables thatdo not appear in the formula, but clause order backtracking does. Clause orderbacktracking is also fast when pn2 is large compared to lnm+ lnn. When p is thislarge, setting just a few variables (to a random setting) tends to satisfy all of theclauses. Clause order backtracking notices this while simple backtracking does not.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 89No average l-SAT analysis has been done for shortest clause backtracking. (See[376] for a partial analysis of the l-SAT case.) It clearly has all the advantages ofunit clause backtracking and it should be much faster when pn is large, but it ishard to know just how much faster. The �rst four prize winning entries in the1992 SAT competition all used shortest clause backtracking [70] with re�nementsto decide which of the various variables from shortest clause to select. (The �fthprize winning entry used a form of hypergraph searching.)The pure literal rule algorithm is one of the �rst to have its average timecomputed [66, 201, 203, 430]. It has the essence of the pure literal rule fromthe DP procedure [118]; by removing most of the good features, an analyzablealgorithm is obtained. Although one would never use this algorithm in practice(other simple algorithms are much better) it rapidly solves a wide class of formulasin polynomial average time, but does not �nd all solutions. It played an importantrole in the early history of average-time analysis of SAT algorithms because itsanalysis is so simple, and the cases where it is fast are so di�erent from those ofsimple backtracking (the other simple to analyze SAT algorithm).The almost pure literal algorithm [426] extends this idea by noting that whenthere are few occurrences of a literal, then assigning a value that makes that literalfalse leads to a sub-formula that is almost a subset of the sub-formula obtainedby setting the literal to true. Thus, if a formula contains one clause that has theonly occurrence of a literal, any solutions to the false sub-formula that are not alsosolutions to the true sub-formula have false values for all remaining literals in thespecial clause.Another case where resolution does not increase the input size is when a variablehas one positive and one negative occurrence. Franco used this idea plus the pureliteral rule to develop an algorithm that is fast for small m so long as p is nottoo large [166]. Using this algorithm for small p and probe order backtracking forlarge p leads to an algorithm that is fast for m < n1=3 times logarithm factors.More clever algorithms based on the same ideas combined with better analyses willprobably lead to an algorithm that is fast when m is smaller than a constant timesn. 12.2. The l-SAT Model. The parameters of this distribution are the num-ber of clauses m, the number of variables n from which clauses are constructed, andthe number of variables l in each clause. Clauses are constructed independently.A clause is uniformly given by a set of l distinct variables that are negated inde-pendently with probability 1/2. Thus, it is not possible that null clauses or clauseswith complementary literals exist in a random formula.The probabilistic analysis of SAT algorithms using the l-SAT model often seemsto be more di�cult than using the average l-SAT model. Some of this di�erence isassociated with the structure of sub-formulas generated as a result of assigning avalue to a variable on an iteration of a particular algorithm. If such sub-formulasare distributed according to the same model as the original formula, the analysiscan proceed easily. In the case of the l-SAT model, statistical dependence betweenclauses after an iteration often prevents this. A notable exception, however, is inthe analysis of variants of the unit clause rule.Another reason for the relative success of analysis under the average l-SATmodel is many algorithms that are unworkable under the l-SAT model are e�ectiveunder the average l-SAT model. A notable example is the probe order backtracking



90 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHalgorithm of the previous section. Under the average l-SAT model, if pn > ln(m),purely negative or positive clauses are rare so probe order backtracking works well.However, in the case of the l-SAT model, negative clauses and positive clauses makeup a �xed percentage of input clauses, so probe order backtracking is ine�ective inthis case.In what follows, when we refer to l-SAT, we assume l � 3 unless speci�callystated (as in, for example, 2-SAT).Satis�able and Unsatis�able Formulas. It is easy to show that randoml-SAT formulas are unsatis�able, in probability, if m=n > �1= log2(1 � 2�l) �2l [168, 417]. It has also been shown that a random 2-SAT formula is satis�able,in probability, if m=n < 1 [86, 200]. This implies that random l-SAT formulas aresatis�able, in probability, if m=n < 1. The gap between 1 and �1= log2(1 � 2�l)has intrigued a number of researchers. The question is whether there is somefunction f(l) such that, for large n;m, if m=n < f(l) then random l-SAT formulasare satis�able, in probability, and if m=n > f(l) then random l-SAT formulas areunsatis�able, in probability. Several results have shaved some of the gap from aboveand below but the question is still open for l > 2. For the 2-SAT case, f(2) = 1 [86,200]. For the 3-SAT case, from above, it is known that random l-SAT formulasare unsatis�able, in probability, if m=n > 4:758 [304]. This has been recentlyimproved to 4:64 [150, 311]. From below, for l > 2, it is known that randoml-SAT formulas are satis�able, in probability, if m=n < maxf2l=(4l); 1g [91]. Thisresult comes with an algorithm for SAT (explained in Algorithms below) that �ndsa solution in polynomial time, almost always. For 3-SAT, this has been improvedto m=n < 3:003 [179] (algorithm explained in Algorithms below).Polynomial-Time Solvable Classes. l-SAT formulas that are members ofcertain polynomial-time solvable classes are not generated frequently enough, forinteresting ratios m=n, to assist in determining satis�ability. This is unlike thesituation for the average l-SAT model. We illustrate with a few examples.The probability that a clause is Horn is (l + 1)=2l. Therefore, the probabilitythat a random l-SAT formula is Horn is ((l + 1)=2l)n which tends to 0 for any�xed l. A formula is hidden Horn if there is a set of variables (a switch set) whoseliterals can all be reversed to yield a Horn formula. Regardless of switch set, thereare only l + 1 out of 2l ways (negation patterns) that a random clause can becomeHorn. Therefore, the expected number of successful switch sets is 2n((l + 1)=2l)mwhich tends to 0 if m=n > 1=(l � log2(l + 1)). Thus, random l-SAT formulas arenot hidden Horn, in probability, if m=n > 1=(l � log2(l + 1)).Associated with a q-Horn formula (see Section 10.5) is a partition C1; C2 ofclauses, and a partition V1; V2 of variables such that no clause in C1 has a variable inV2 and, for each clause in C2, there are at least one and at most two variables takenfrom V2. The probability that a particular pairwise partition has this propertycan be computed. Multiplying by the number of pairwise partitions gives theexpected number of such partitions which is an upper bound on the probabilitythat one exists. We �nd that no such partitions exist with jV1j < (jV1j+ jV2j)=2, inprobability, if m=n > 1= log2(2l+1=(l2� l+2)) = 1=(l� log2(l2� l+2)+1). Coupledwith the above hidden Horn result on l-SAT formulas, we have the remarkable resultthat random l-SAT formulas are not q-Horn, in probability, ifm=n > 2=(l� log2(l+



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 911)). This bound can be reduced considerably, however the point we make is that,for large enough l, even the following simple algorithm is more e�ective, in someprobabilistic sense, on random l-SAT formulas than looking for q-Horn formulas:randomly remove all but 2 literals from every clause; solve the resulting 2-SATformula; if it's satis�able, return a satisfying truth assignment, otherwise give up.Algorithms. Wemention the two best positive results to date and one negativeresult. The �rst algorithm, called SC for Short Clause, iteratively selects a variableand assigns it a value until either a solution is found or it gives up because it hasreached a dead end. Such an assignment may satisfy some clauses and falsify someliterals. There is no backtracking in SC. Variables are selected as follows: if thereis a clause with one non-falsi�ed literal, choose the variable and value that satis�esthat clause; otherwise, if there is a clause with two non-falsi�ed literals, choose oneof the variables and value that satis�es that clause; otherwise, choose the variablearbitrarily. This algorithm is a restricted version of GUC [83] (Generalized UnitClause) that always chooses a variable and value that satis�es a clause with thefewest number of non-falsi�ed literals. The analysis of SC is given in [91]. Theresult is that SC does not give up, in probability, if m=n < 2l=(4l).By adding a limited amount of backtracking to GUC, Frieze and Suen get analgorithm for 3-SAT, called GUCB, that �nds a satisfying assignment, in proba-bility, when m=n < 3:003 [179]. Backtracking is managed as follows. Considerthe sequence of variable selections and assignment up to a given iteration h inthe execution of GUCB. Let this sequence be represented as a list of variable-value pairs f(x�1 ; v1); (x�2 ; v2); :::; (x�h; vh)g. Suppose, for p � 1, vp = false,vp+1 = ::: = vh = true, and two clauses contain one non-falsi�ed literal but notruth assignment will satisfy both. Then set vp+1 = vp+2 = ::: = vh = false,update all clauses accordingly (satis�ed clauses and falsi�ed literals) and continueiteratively selecting variables and assigning values.Finally, we mention the important result in [86] that resolution proofs must beexponentially large, in probability, for random unsatis�able l-SAT formulas gener-ated with m=n �xed. Thus, for m=n > log2(1 � 2�l) (�xed), resolution requiresexponential time, in probability. This, of course, implies that DPL trees are alsoexponential in size for m=n > log2(1� 2�l).Other Non-Backtracking Heuristics The algorithms SC and GUC men-tioned above repeatedly choose a variable and a value until either a satisfyingassignment is found or a clause becomes falsi�ed in which case the algorithm givesup. The heuristic used to select the variable and value is strongly associated withhow often the algorithm succeeds. A reasonable heuristic is to make the choicethat maximizes the number of assignments satisfying the formula that remains af-ter the selected value is assigned to the selected variable. Alternatively, the selectedvariable and value might maximize the expected number of satisfying assignments.This expectation can be approximated as follows. Suppose a formula has mi clausesof i literals for all 1 � i and n distinct variables. If all clauses are statistically in-dependent and all clauses of i literals are equally likely, the average number ofsatisfying assignments is 2n(1=2)m1(3=4)m2 (7=8)m3 :::. Thus, we may choose a vari-able and value that maximize this number. Equivalently, the choice may be madeto maximize the log of this number or n+m1 log(1=2)+m2 log(3=4)�m3 log(7=8):::



92 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHwhich is approximately n+m1(1=2)+m2(1=4)+m3(1=8):::. Removing n, which isunimportant, leaves Johnson's heuristic described in [286]. Although this heuristichas not been analyzed on the l-SAT model, experiments have shown it to be quitee�ective when used in conjunction with unit resolution.13. Performance EvaluationThe most important measure of a SAT algorithm's performance remains itspractical problem-solving ability. For inputs requiring only one solution, both com-plete algorithms and incomplete algorithms are applicable. For inputs requiring allsolutions or an optimal solution, only complete algorithms will work. The past twodecades have seen the proliferation of di�erent algorithms for solving SAT: reso-lution, local search, global optimization, BDD SAT solver, and multispace search,among others. Previous experience indicates that these techniques complementrather than exclude each other by being e�ective for particular instances of SAT.In this section, we summarize the experimental performance of several typicalSAT algorithms on some random instances, DIMACS benchmarks, structured in-stances, and practical industrial benchmarks. A fuller version of SAT algorithms'benchmarking results will appear in a forthcoming paper, \Algorithms for the Sat-is�ability (SAT) Problem: Benchmarking," by the same authors.13.1. Experiments on Random Formulas. In this section, we give exper-imental results for the following SAT algorithms in solving random l-SAT formulasand random average l-SAT formulas:1. SAT1.3: a sequential CNF local search algorithm [207, 221, 209, 212].2. SAT1.7: a parallel CNF local search algorithm [207, 212].3. SAT1.13: a complete CNF local search algorithm [207, 212].4. SAT1.4: a sequential DNF local search algorithm [207].5. SAT1.8: a parallel DNF local search algorithm [207].6. SAT1.18: a complete DNF local search algorithm [207].7. SAT14.6: an optimized, discrete global optimization algorithm [207, 209,213].8. SAT14.16: a complete global optimization algorithm [207, 209, 213].9. SAT14.7: a continuous, global optimization [207, 209, 218].10. SAT14.11: a complete, continuous global optimization [207, 209, 211].11. DPL: a Davis-Putnam algorithm in Loveland form [117].12. GSAT: a sequential, greedy local search algorithm [472].13. IP: a parallel interior point zero-one integer programming algorithm [303,301].Real Execution Times. In Table 1 we give real execution times of somelocal search and global optimization algorithms for solving l-SAT instances. Allthe results were run on a SUN SPARC 2 workstation. The number of clauses (m),the number of variables (n), and the number of literals per clause (l), are given inthe �rst three columns. Symbol \G/L" in Column 4 stands for the number of timesthat all the algorithms hit global/local minimum points. From these results we canobserve that, in terms of global convergence and local convergent rate, these localsearch and global optimization algorithms exhibit desirable convergent propertiesand fast computing speed for instances in the table.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 93Table 1. Real execution performance averaged over ten runsof some local and global optimization algorithms on aSUN SPARC 2 Workstation. Time Units: seconds. Symbol\G/L" stands for the number of times that all the algorithms hitglobal/local minimum points.Problems Execution Timem n l G/L SAT1.3 SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16100 100 3 10/0 0.003 0.001 0.001 0.002 0.002 0.003200 100 3 10/0 0.007 0.004 0.010 0.004 0.005 0.008300 100 3 10/0 0.035 0.008 0.015 0.004 0.014 0.012400 100 3 10/0 0.464 0.027 0.145 0.030 0.040 0.2151000 1000 3 10/0 0.036 0.030 0.048 0.029 0.033 0.0511500 1000 3 10/0 0.087 0.055 0.078 0.049 0.058 0.0812000 1000 3 10/0 0.192 0.084 0.113 0.080 0.093 0.1152500 1000 3 10/0 0.371 0.124 0.158 0.114 0.133 0.1803000 1000 3 10/0 0.872 0.179 0.310 0.164 0.241 0.3593500 1000 3 10/0 6.878 0.636 1.008 0.588 0.919 1.3571000 1000 4 10/0 0.026 0.022 0.045 0.027 0.029 0.0402000 1000 4 10/0 0.094 0.061 0.103 0.061 0.057 0.0923000 1000 4 10/0 0.239 0.094 0.160 0.091 0.109 0.1664000 1000 4 10/0 0.483 0.144 0.230 0.135 0.162 0.2345000 1000 4 10/0 1.004 0.227 0.338 0.210 0.267 0.3306000 1000 4 10/0 2.410 0.383 0.465 0.359 0.388 0.4787000 1000 4 10/0 5.999 0.865 0.729 0.852 0.756 0.8408000 1000 4 10/0 36.17 1.896 2.088 1.821 2.595 2.6418500 1000 4 10/0 140.3 10.79 7.974 10.51 12.79 12.1210000 1000 5 10/0 2.899 0.451 0.610 0.393 0.464 0.56711000 1000 5 10/0 3.799 0.489 0.800 0.426 0.580 0.75012000 1000 5 10/0 6.729 0.593 0.839 0.505 0.649 0.84413000 1000 5 10/0 9.541 0.761 1.154 0.681 0.978 1.06414000 1000 5 10/0 21.41 1.107 1.308 0.969 1.282 1.65215000 1000 5 10/0 60.80 1.671 2.207 1.429 2.047 2.16610000 400 6 10/0 12.58 0.497 0.625 0.463 0.514 0.77110000 500 6 10/0 4.353 0.377 0.640 0.342 0.345 0.55310000 600 6 10/0 2.571 0.328 0.439 0.280 0.331 0.53410000 700 6 10/0 1.989 0.284 0.550 0.248 0.289 0.49110000 800 6 10/0 1.776 0.277 0.494 0.256 0.287 0.45210000 900 6 10/0 1.305 0.289 0.523 0.248 0.278 0.47610000 1000 6 10/0 1.140 0.264 0.488 0.227 0.269 0.47320000 1000 7 10/0 3.238 0.500 1.124 0.421 0.496 1.00430000 2000 7 10/0 4.110 0.882 1.733 0.722 0.910 1.46040000 3000 7 10/0 5.557 1.289 2.382 1.114 1.250 2.19650000 4000 7 10/0 6.793 1.666 3.036 1.386 1.632 2.73060000 5000 7 10/0 7.942 1.260 3.719 1.833 1.971 3.40210000 1000 10 10/0 0.143 0.050 0.377 0.034 0.048 0.31220000 2000 10 10/0 0.408 0.124 0.821 0.090 0.099 0.66430000 3000 10 10/0 0.726 0.258 1.311 0.197 0.179 1.07640000 4000 10 10/0 0.963 0.305 1.826 0.241 0.328 1.51150000 5000 10 10/0 1.262 0.441 2.372 0.357 0.395 1.887Among optimization algorithms, the parallel CNF local search (SAT1:7) algo-rithm was much faster than the sequential local search (SAT1:3) algorithm. TheSAT1:7 algorithm had comparable computing performance with the DNF parallel



94 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHTable 2. Performance comparison averaged over ten runs betweena DPL and some optimization algorithms on a SUN SPARC 2workstation for solving 3-SAT problem instances. Time units: sec-onds. Symbol \S/F" in Column 4 stands for DPL's success/failureto give an answer within a time limit of 120�m=n seconds, whereassymbol \G/L" stands for the number of times that all the remain-ing SAT optimization algorithms hit global/local minimum points.Problems Execution Timem n l S/F DPL G/L SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16500 500 3 10/0 2.159 10/0 0.013 0.021 0.011 0.013 0.027750 500 3 10/0 2.916 10/0 0.015 0.030 0.013 0.021 0.0331000 500 3 10/0 3.657 10/0 0.035 0.048 0.032 0.031 0.0471250 500 3 9/1 5.797 10/0 0.049 0.064 0.044 0.067 0.0721500 500 3 6/4 9.147 10/0 0.108 0.117 0.089 0.115 0.1081000 500 4 10/0 4.684 10/0 0.026 0.040 0.024 0.024 0.0381500 500 4 10/0 7.960 10/0 0.040 0.075 0.043 0.042 0.0662000 500 4 8/2 10.27 10/0 0.066 0.105 0.062 0.069 0.0882500 500 4 2/8 15.96 10/0 0.074 0.130 0.085 0.109 0.1523000 500 4 1/9 46.33 10/0 0.118 0.201 0.115 0.153 0.2343000 500 5 10/0 16.90 10/0 0.094 0.137 0.082 0.074 0.1394000 500 5 5/5 28.39 10/0 0.119 0.204 0.103 0.144 0.1885000 500 5 0/10 >1200 10/0 0.180 0.253 0.170 0.196 0.2886000 500 5 0/10 >1440 10/0 0.313 0.370 0.267 0.313 0.4717000 500 5 0/10 >1680 10/0 0.591 0.575 0.478 0.604 0.62310000 1000 10 10/0 101.8 10/0 0.047 0.382 0.038 0.049 0.31512000 1000 10 10/0 124.3 10/0 0.073 0.458 0.053 0.052 0.38214000 1000 10 10/0 145.2 10/0 0.077 0.562 0.058 0.063 0.43016000 1000 10 10/0 167.1 10/0 0.098 0.596 0.073 0.078 0.51718000 1000 10 10/0 188.6 10/0 0.136 0.716 0.102 0.095 0.583local search (SAT1:8) algorithm. Discrete global optimization (SAT14:6) algo-rithm was slightly slower than parallel local search algorithms. Complete localsearch (SAT1:13) algorithm and complete global optimization (SAT14:16) algo-rithm, due to a systematic bookkeeping, were slightly slower than parallel localsearch but signi�cantly faster than the sequential local search algorithm.As discussed in [221, 212], beyond a certain range of hardness, for example,for m = 8500; n = 1000, and l = 4, the computing time of these optimizationalgorithms started to increase.The experimental results shown in Table 1 were collected from early reports in[207, 212, 213]. The present local and global optimization algorithms are muchmore faster than their previous versions [209, 212, 219].Performance Comparison with the DP Algorithm. The execution re-sults of the DPL algorithm and some optimization algorithms for solving l-SATinstances are given in Table 2. We executed each algorithm ten times and reportthe average execution times. Because DPL was slow for large size instances, we seta maximum execution time of 120�m=n seconds as the time limit of its execution.Symbol \S/F" in Column 4 stands for DPL's success/failure in giving an answerwithin such a time limit. For DPL, the average execution time does not include themaximum execution time limit if some of the ten executions were successful; theaverage execution time was taken as the maximum execution time limit only if allten executions failed. Symbol \G/L" in Column 6 stands for the number of timesthat all the remaining SAT optimization algorithms hit the global/local minimumpoints.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 95Table 3. Performance comparison between some optimization al-gorithms running on a SUN SPARC 2 workstation and the GSATalgorithm running on a MIPS computer with comparable com-puting power for the 3-SAT problem instances. Time units: sec-onds.Problems Execution Timem n l GSAT SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16215 50 3 0.400 0.019 0.100 0.006 0.020 0.030301 70 3 0.900 0.054 0.010 0.020 0.020 0.020430 100 3 6.000 0.336 0.040 0.420 0.050 0.370516 120 3 14.00 0.596 0.810 1.136 0.410 0.040602 140 3 14.00 0.260 8.060 0.750 1.990 0.170645 150 3 45.00 0.102 0.190 0.120 0.040 0.870860 200 3 168.0 1.776 0.970 0.070 6.710 0.4901062 250 3 246.0 3.106 20.71 0.070 12.43 0.0901275 300 3 720.0 8.822 19.66 3.750 19.14 4.510From numerous algorithm executions, we observe that, for random l-SAT in-stances listed in Table 2, DPL was slower than the rest of the SAT optimiza-tion algorithms. As the input size increases, the number of failures, F , increasedquickly. For some slightly large inputs, such as m = 5000; n = 500, and l = 5,all ten algorithm executions failed after a reasonably long time limit. Due to itsO(mO(n=l)) average run-time complexity, even for some fairly easy instances, suchas m = 10000; n = 1000, and l = 10, DPL took an excessive amount of time to �nda solution. In comparison, local search and global optimization algorithms weresuccessful for all ten executions. They were able to �nd a solution to the giveninstances e�ciently.Table 2 suggests that DPLmay not be a suitable candidate for large size randoml-SAT instances. This observation should not be generalized to other applicationcases. In many other applications, as observed by others [69, 70, 126], DPLperformed very well.Performance Comparison with GSAT . Table 3 compares the performancebetween some local search and global optimization algorithms running on a SUNSPARC 2 workstation and GSAT [472] running on a MIPS computer with com-parable computing power [471]. Since GSAT is essentially a version of sequentiallocal search (i.e., SAT1) algorithm, for solving 3-SAT instances generated from thesame input model used in [383], local search and global optimization algorithmsperformed approximately tens to hundreds times faster than GSAT . Among them,parallel DNF local search (SAT1:8) algorithm and complete global optimization(SAT14:16) were the best.Performance Comparison with Interior Point Zero-One Integer Pro-gramming Algorithm. Recently, Kamath et al. used an interior point zero-oneinteger programming algorithm to solve SAT [303, 301]. They implemented theiralgorithm in FORTRAN and C languages and ran the algorithm on a KORBX(R)parallel/vector computer with instances generated from the average 3-SAT input



96 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHTable 4. Performance comparison between some optimization al-gorithms running on a SUN SPARC 2 workstation and an interiorpoint zero-one integer programming algorithm running ona KORBX(R) parallel/vector computer for solving average 3-SATproblem instances. Time units: seconds. Symbol \S/F" stands forthe number of times that IP hits the global/local minimum points,whereas symbol \G/L" stands for the number of times that theremaining SAT algorithms hit the global/local minimum points.Problems Execution Timem n l S/F IP G/L SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16100 50 5 52/0 0.7 10/0 0.001 0.004 0.001 0.001 0.004200 100 5 70/0 1.1 10/0 0.006 0.010 0.006 0.005 0.007400 200 7 69/0 3.5 10/0 0.007 0.014 0.007 0.007 0.018800 400 10 31/0 5.6 10/0 0.009 0.034 0.009 0.003 0.030800 400 7 20/0 7.8 10/0 0.014 0.032 0.014 0.009 0.0261000 500 10 49/0 7.4 10/0 0.012 0.037 0.012 0.006 0.0392000 1000 10 10/0 18.5 10/0 0.032 0.091 0.032 0.019 0.0832000 1000 7 50/0 21.5 10/0 0.056 0.099 0.056 0.055 0.0552000 1000 3 49/1 50.4 10/0 2.657 0.162 2.657 3.917 27.194000 1000 4 1/1 1085.4 10/0 10.63 11.07 10.63 6.826 9.5554000 1000 10 10/0 25.1 10/0 0.055 0.189 0.055 0.044 0.1638000 1000 10 10/0 38.0 10/0 0.219 0.456 0.219 0.254 0.35316000 1000 10 10/0 66.4 10/0 0.603 1.042 0.603 0.625 1.05232000 1000 10 10/0 232.4 10/0 1.701 2.720 1.701 1.611 2.434model. The KORBX(R) parallel computer operates in scalar mode at approxi-mately 1 MFlops and at 32 MFlops with full vector concurrent mode. Their exe-cution results are given in Columns 4 and 5 of Table 4.We ran local search and global optimization algorithms for the same instances(listed in [303, 301]) on a SUN SPARC 2 workstation. The results are given inTable 4. Apparently, as compared to the interior point zero-one integer program-ming algorithm running on a parallel computer, in addition to improved globalconvergence, local search and global optimization algorithms were much simplerand achieved several orders of magnitude of performance improvements in terms ofcomputing time.13.2. Experiments on Hard Random Formulas. We compare the per-formance of two local search algorithms and a tabu search algorithm for the hardrandom 3-SAT problem instances generated from the mw� generator. All threeprograms were written in C. Table 5 give the real execution performance of theWSAT (GSAT with randomwalk) on an SGI Challenge with a 70 MHz MIPS R4400processor [475, 474].Tables 6 and 7 show the experimental results ofWSAT and TSAT (Tabu searchfor SAT) programs written in C under Linux 1.1.59 for PC [370]. On a samemachine, Mazure, Sais, and Gregoire compared the GSAT with TSAT and foundthat TSAT was more e�cient in most cases. In addition, TSAT was able to solvemore problem instances compared to the GSAT. The testing for TSAT for large sizeexample with n = 2000 and m = 8240, however, was terminated at n=m = 4:12,before entering into the hard region of the random 3-SAT instances.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 97Table 5. WSAT (GSAT with random walk)'s real execution per-formance for hard random 3-SAT problem instances on an SGIChallenge with a 70 MHz MIPS R4400 processor. Time unit: sec-onds [475].Problems GSAT Walkn m time ips R time ips R100 430 .4 7554 8.3 .2 2385 1.0200 860 22 284693 143 4 27654 1.0400 1700 122 2:6� 106 67 7 59744 1.1600 2550 1471 30 � 106 500 35 241651 1.0800 3400 * * * 286 1:8� 106 1.11000 4250 * * * 1095 5:8� 106 1.22000 8480 * * * 3255 23 � 106 1.1Table 6. WSAT (GSAT with random walk)'s real execution per-formance for hard random 3-SAT problem instances on a PC. Timeunit: seconds [370].n m inst. time ips solved ratio100 430 500 0.18 2803 88% 31,85200 860 500 1.99 18626 73% 255,85400 1700 500 15.03 204670 100% 2046,70600 2550 500 19.59 250464 62% 4013,85800 3400 500 140.61 1809986 67% 26854,391000 4250 500 369.88 4633763 57% 81009,842000 8240 50 3147.26 26542387 16% 1658899,19Table 7. TSAT's real execution performance for hard random3-SAT problem instances on a PC. Time unit: seconds [370].n m inst. time ips solved ratio100 430 500 0.11 1633 93% 17,60200 860 500 0.73 9678 74% 130,78400 1700 500 11.51 145710 100% 1457,10600 2550 500 13.92 167236 65% 2580,80800 3400 500 99.45 1143444 71% 16150,341000 4250 500 292.10 3232463 62% 51802,292000 8240 50 3269.15 29415465 40% 735386,63The performance of the SAT1.5 algorithm [209, 219] (Section 7.7) is shownin Table 8. For hard problem instances in the transition region [383], SAT1.5 cansolve large-size SAT problem instances e�ciently. It took WSAT on average 3,255seconds to solve the n = 2; 000 and m = 8; 480 instances on an SGI Challenge witha 70 MHz MIPS R4400 processor. On a SUN SPARC 20 workstation, the SAT1.5algorithm was able to solve the same problem instance in some 530 seconds on



98 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHTable 8. Real execution performance of the SAT1.5 algorithmfor hard random 3-SAT problem instances on a SUN SPARC 20workstation. For each problem, 30 random instances were tested.The minimum (Tmin), maximum (Tmax), and average (Tmean) ex-ecution times were recorded. \S" indicates the number of successcases of �nding solutions within the time limit (T-limit). Timeunit: second.n m m=n S/30 Tmin Tmean Tmax T-limit1000 4230 4.2300 20/30 6.04 206.90 956.15 10001000 4240 4.2400 15/30 0.55 223.26 891.11 10001000 4250 4.2500 14/30 1.69 88.370 454.79 10001000 4260 4.2600 10/30 24.4 243.25 914.35 10002000 8460 4.2300 12/30 115.8 779.44 2069.9 30002000 8480 4.2400 14/30 17.64 530.32 1360.9 30002000 8500 4.2500 7/30 58.09 789.35 1677.6 30002000 8510 4.2550 9/30 59.08 840.33 2322.8 30002000 8460 4.2300 15/30 58.95 684.32 4508.2 50002000 8480 4.2400 15/30 15.31 1273.5 4057.9 50002000 8500 4.2500 15/30 112.7 1527.8 3644.5 50002000 8520 4.2600 9/30 123.2 1522.9 4338.5 50003000 12690 4.2300 12/30 430.6 1787.2 2876.4 50003000 12700 4.2333 18/30 122.5 2101.5 4479.4 50003000 12720 4.2400 11/30 270.6 1503.6 3840.7 50003000 12740 4.2467 12/30 229.1 2062.9 4807.4 50003000 12680 4.2267 15/30 356.1 2788.3 9510.2 100003000 12700 4.2333 11/30 503.3 3681.1 8247.9 100003000 12720 4.2400 15/30 30.09 2300.3 7002.3 100003000 12740 4.2467 8/30 563.3 2620.5 5330.9 100004000 16920 4.2300 11/30 739.83 4064.5 11498.2 120004000 16930 4.2325 10/30 1733.5 5472.0 10187.8 120004000 16940 4.2350 7/30 571.20 1948.9 4768.92 120004000 16960 4.2400 10/30 294.80 3709.0 9921.77 120005000 21150 4.2300 8/30 2024.7 3867.9 8134.81 90005000 21175 4.2350 6/30 1640.1 2982.7 4193.68 90005000 21200 4.2400 3/30 2935.8 4435.7 6357.65 90005000 21225 4.2450 4/30 3883.5 6025.6 10980.9 1500010000 41000 4.1000 30/30 294.44 1315.6 3849.38 2000010000 41800 4.1800 8/18 4294.5 8387.9 16654.8 2000010000 42000 4.2000 4/30 963.53 5877.8 12020.3 2000010000 42200 4.2200 2/30 9270.6 14241.9 19213.4 20000average [219, 220]. For hard, large size SAT problem instances with n > 5; 000,SAT1.5 algorithm was able to handle the problems comfortably.13.3. Experiments on Structured Instances. We now take a look at theperformance of SAT algorithms for some structured instances.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 99Table 9. Performance of SAT1.7 on a SUN SPARC 10 worksta-tion. Time Units: seconds.Problems Ten Trials Execution TimeName m n Global SAT Min Mean Maxii16a1.sat 1650 19368 10/10 YES 10.320 125.51 417.42ii16b1.sat 1728 24792 10/10 YES 0.6100 6.1130 28.760ii16c1.sat 1580 16467 10/10 YES 0.5400 1.8740 3.7500ii16d1.sat 1230 15901 10/10 YES 0.4900 1.3810 2.8200ii16e1.sat 1245 14766 10/10 YES 0.5300 0.9720 1.4800ii16a2.sat 1602 23281 N/Aii16b2.sat 1076 16121 10/10 YES 1.9000 39.118 102.60ii16c2.sat 924 13803 10/10 YES 0.3500 14.109 41.650ii16d2.sat 836 12461 10/10 YES 0.3300 19.840 52.410ii16e2.sat 532 7825 10/10 YES 0.5000 6.8830 21.980ii32a1.sat 459 9212 10/10 YES 0.3600 3.5740 10.330ii32b1.sat 228 1374 10/10 YES 0.1100 0.7390 1.6700ii32b2.sat 261 2558 10/10 YES 0.1000 1.9040 4.4700ii32b3.sat 348 5734 10/10 YES 1.6400 10.559 19.330ii32b4.sat 381 9618 10/10 YES 0.5100 2.3060 4.7800ii32c1.sat 225 1280 10/10 YES 0.0100 0.1150 0.4800ii32c2.sat 249 2182 10/10 YES 0.0600 0.3980 0.9000ii32c3.sat 279 3272 10/10 YES 0.6900 5.4900 16.850ii32c4.sat 759 20862 10/10 YES 5.5200 361.80 1496.3ii32d1.sat 332 2703 10/10 YES 0.2200 1.0680 3.1000ii32d2.sat 404 5153 10/10 YES 0.2100 0.9140 2.1800ii32d3.sat 824 19478 10/10 YES 1.7100 49.522 109.52ii32e1.sat 222 1186 10/10 YES 0.0200 0.3260 1.0700ii32e2.sat 267 2746 10/10 YES 0.0400 0.1130 0.3400ii32e3.sat 330 5020 10/10 YES 0.4500 5.2700 13.910ii32e4.sat 387 7106 10/10 YES 0.2700 10.734 46.750ii32e5.sat 522 11636 10/10 YES 0.4900 23.424 84.470Instances Generated from the N -Queens Problem. To assess the per-formance of local search and global optimization algorithms with non-binary in-stances, we also tested SAT instances generated from instances of the n-queensproblem. Figure 32 compares the performance between DP and some optimizationalgorithms. It also compares the performance between DP and SAT14:11 [211],a complete, continuous global optimization algorithm. Due to expensive oatingpoint computations, the execution time of SAT14:11 is higher than those of otherdiscrete local search and global optimization algorithms.DIMACS Instances. For the same SAT formulas generated from instancesof the Boolean inference problem [302], the performance of SAT1.7 [212], a parallellocal search algorithm, and a simple backtracking algorithm [328] is shown in Tables9 and 10, respectively. An algorithm may be e�ective for only one type of input.The results suggest that it can be much more e�cient if we use several di�erenttypes of algorithms to handle the same inputs simultaneously.In Table 11, we compare A2 [538] with WSAT, GSAT, and Davis-Putnam'salgorithm in solving the circuit diagnosis benchmark problems. We present averageexecution times and average number of iterations of A2 as well as published average
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Figure 32. Comparison of DP with SAT1.7, SAT1.13,SAT14.6, SAT14.16, and SAT14.11 for solving SAT instancesgenerated from CSP instances



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 101Table 10. Performance of a simple backtracking algorithmon a SUN SPARC 10 workstation. Time Units: seconds.Name m n SAT Time Name m n SAT Timeii16a1.sat 1650 19368 YES 1.285 ii16b1.sat 1728 24792 YES 1.490ii16c1.sat 1580 16467 N/A 1.956 ii16d1.sat 1230 15901 YES 1.660ii16e1.sat 1245 14766 N/A 2.125ii16a2.sat 1602 23281 YES 1.430 ii16b2.sat 1076 16121 YES 1.505ii16c2.sat 924 13803 YES 2.016 ii16d2.sat 836 12461 YES 1.665ii16e2.sat 532 7825 N/A 2.051ii32a1.sat 459 9212 YES 1.160 ii32b1.sat 228 1374 YES 1.035ii32b2.sat 261 2558 YES 1.035 ii32b3.sat 348 5734 YES 1.240ii32b4.sat 381 9618 YES 1.285ii32c1.sat 225 1280 YES 0.000 ii32c2.sat 249 2182 YES 1.325ii32c3.sat 279 3272 YES 1.240 ii32c4.sat 759 20862 YES 1.695ii32d1.sat 332 2703 YES 1.035 ii32d2.sat 404 5153 YES 1.525ii32d3.sat 824 19478 YES 1.755ii32e1.sat 222 1186 YES 0.000 ii32e2.sat 267 2746 YES 1.035ii32e3.sat 330 5020 YES 1.565 ii32e4.sat 387 7106 YES 1.615ii32e5.sat 522 11636 YES 1.655Table 11. Comparison of A2's execution times in seconds av-eraged over 10 runs with respect to published results on some ofthe circuit diagnosis problems in the DIMACS archive, includingthe best known results obtained by WSAT, GSAT, and Davis-Putnam's algorithm [475].Problem n m A2 WSAT GSAT DPId SS 10/51 SGI # Iter.ssa7552-038 1501 3575 0.228 0.235 7970 2.3 129 7ssa7552-158 1363 3034 0.088 0.102 2169 2 90 *ssa7552-159 1363 3032 0.085 0.118 2154 0.8 14 *ssa7552-160 1391 3126 0.097 0.113 3116 1.5 18 *� A2: Sun SparcStation 10/51 and a 150-MHz SGI Challenge with MIPS R4400;� GSAT, WSAT and DP: SGI Challenge with a 70 MHz MIPS R4400.Table 12. Comparison of A2's execution times in seconds aver-aged over 10 runs with published results on circuit synthesis prob-lems from the DIMACS archive, including the best known resultsobtained by GSAT, integer programming, and simulated anneal-ing [475].Problem n m A2 GSAT Integer SAId. SS 10/51 SGI # Iter. Prog.ii16a1 1650 19368 0.122 0.128 819 2 2039 12ii16b1 1728 24792 0.265 0.310 1546 12 78 11ii16c1 1580 16467 0.163 0.173 797 1 758 5ii16d1 1230 15901 0.188 0.233 908 3 1547 4ii16e1 1245 14766 0.297 0.302 861 1 2156 3� A2: Sun SparcStation 10/51 and a 150-MHz SGI Challenge with MIPS R4400;� GSAT and SA: SGI Challenge with a 70 MHz MIPS R4400;� Integer Programming: VAX 8700.



102 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHTable 13. Comparison of DLM's execution times in secondsaveraged over 10 runs with the best known results obtained byGSAT [476] on the circuit-synthesis, parity-learning, arti�ciallygenerated 3-SAT instances, and graph coloring problems from theDIMACS archive.Problem n m A1 GSATIdenti�cation SS 10/51 Success Time SuccessRatio Ratioaim-100-2 0-yes1-1 100 200 0.19 10/10 1.96 9/10aim-100-2 0-yes1-2 100 200 0.65 10/10 1.6 10/10aim-100-2 0-yes1-3 100 200 0.19 10/10 1.09 10/10aim-100-2 0-yes1-4 100 200 0.10 10/10 1.54 10/10A2 GSATii32b3 348 5734 0.31 10/10 0.6 10/10ii32c3 279 3272 0.12 10/10 0.27 10/10ii32d3 824 19478 1.05 10/10 2.24 10/10ii32e3 330 5020 0.16 10/10 0.49 10/10par8-2-c 68 270 0.06 10/10 1.33 10/10par8-4-c 67 266 0.09 10/10 0.2 10/10A3 GSATg125.17 2125 66272 1390.32 10/10 264.07 7/10g125.18 2250 70163 3.197 10/10 1.9 10/10g250.15 3750 233965 2.798 10/10 4.41 10/10g250.29 7250 454622 1219.56 9/10 1219.88 9/10� A1, A2, A3: Sun SparcStation 10/51� GSAT: SGI Challenge (model unknown)execution times of WSAT, GSAT and Davis-Putnam's method [475]. We did notattempt to reproduce the reported results of GSAT and WSAT, since the resultsmay depend on initial conditions, such as the seeds of the random number generatorand other program parameters. We ran A2 on an SGI Challenge9 so that our timingresults can be compared to those of GSAT and WSAT. Our results show that A2is approximately one order of magnitude faster than WSAT.In Table 12, we compare A2 [538] with the published results of GSAT, integerprogramming and simulated annealing on the circuit synthesis problems [475]. Ourresults show that A2 performs several times faster than GSAT.In Table 13, we compare the performance of the three versions of DLM withsome of the best known results of GSAT on circuit-synthesis, parity-learning, somearti�cially generated 3-SAT, and some of the hard graph coloring problems. Theresults on GSAT are from [476], which are better than other published results.Our results show that DLM is consistently faster than GSAT on the \ii" and \par"inputs, and that A1 is an order-of-magnitude faster than GSAT on some \aim"inputs.9Based on a single-CPU 150-MHz SGI Challenge with MIPS R4400 at the University of Illi-nois National Center for Supercomputing Applications, we estimate empirically that it is 15.4%slower than a Sun SparcStation 10/51 for executing A2 to solve SAT benchmark problems. How-ever, we did not evaluate the speed di�erence between a 150-MHz SGI Challenge and a 70-MHzSGI Challenge on which GSAT and WSAT were run.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 103Table 14. Execution times in CPU seconds over 10 runs of A3 tosolve some of the more di�cult DIMACS benchmark problems.Prob. Succ. Sun SS 10/51 SecondsId. Ratio Avg. Min. Max.par8-1 10/10 4.780 0.133 14.383par8-2 10/10 5.058 0.100 13.067par8-3 10/10 9.903 0.350 21.150par8-4 10/10 5.842 0.850 16.433par8-5 10/10 14.628 1.167 34.900par16-1 5/10 11172.8 4630.6 20489.1par16-2 1/10 856.9 856.9 856.9par16-3 1/10 20281.6 20281.6 20281.6par16-4 3/10 3523.1 1015.0 7337.9par16-5 1/10 13023.4 13023.4 13023.4par16-1-c 10/10 398.1 11.7 1011.9par16-2-c 10/10 1324.3 191.0 4232.3par16-3-c 10/10 987.2 139.8 3705.2par16-4-c 10/10 316.7 5.7 692.66par16-5-c 10/10 1584.2 414.5 3313.2hanoi4 1/10 476.5 476.5 476.5f1000 10/10 126.8 4.4 280.7f600 10/10 16.9 2.1 37.2f2000 10/10 1808.6 174.3 8244.7Program parametersFlat region limit = 50; � reset interval = 10,000; operation: � = �=1:5.Problem group par-16-[1-5] test par problems f hanoi4Tabu length 100 50 50 50Increment of � 1 1/2 1/16 1/2We are designing new strategies to improve A3's [538] performance. Tables 14shows some preliminary but promising results of A3 on some of the more di�cultbut satis�able DIMACS benchmark inputs.13.4. Experiments on Practical IndustrialBenchmarks. Performanceof the SAT-Circuit Solver with Partitioning Preprocessing. We compare inTable 15 Gu and Puri's SAT solver (having a partitioning preprocessing) [216]with existing algorithms [331, 529] for solving industrial asynchronous circuit de-sign benchmarks, including the HP and Philips benchmarks. In the table, N and mare the initial number of states and initial number of signals, respectively. Corre-spondingly, N f and mf are the �nal number of states and �nal number of signals.Symbol A indicates the 2-level implementation area.The experimental results indicate that, as compared to the previous methods[331, 529], the SAT-Circuit solver with partitioning preprocessing achieves manyorders of magnitude of performance improvement in terms of computing time, inaddition to a reduced implementation area. For example, in a large circuit mr0,SAT-Circuit took 2:80 seconds to solve the problem and yielded a two-level im-plementation area with 41 literals.10 In contrast, Lavagno et al.'s algorithm took1; 084:5 seconds and an area of 86 literals. For this example, Vanbekbergen etal.'s algorithm could not yield a solution within 3; 600 seconds and aborted due to10Literal here is a standard unit measuring layout area.



104 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHTable 15. Experimental results comparing the SAT-Circuitsolver (with SAT formula partitioning preprocessing), Vanbekber-gen et al.'s algorithm, and Lavagno et al.'s algorithm, on practicalcircuit benchmarks on a SUN SPARC-2 workstation. Time unit:seconds.Circuit Speci�cations Preprocessing [216] Vanbekbergen et al. [529] Lavagno et al. [331]Name N m Nf mf A CPU Nf mf A CPU mf A CPUmr0 302 11 469 14 41 2.80 backtrack limit > 3600 13 86 1084.5mr1 190 8 373 12 55 1.73 backtrack limit > 872:9 10 53 237.5mmu0 174 8 441 11 49 0.87 backtrack limit > 406:3 state errormmu1 82 8 131 10 50 0.37 backtrack limit > 101:3 10 37 47.8sbuf-ram-write 58 10 93 12 59 0.36 90 12 74 5.21 12 35 54.6vbe4a 58 6 106 8 37 0.19 116 8 40 0.25 8 41 5.50nak-pa 56 9 59 10 25 0.20 58 10 32 0.08 10 41 20.8pe-rcv-ifc-fc 46 8 50 9 48 0.24 53 9 50 0.13 9 62 14.3ram-read-sbuf 36 10 44 11 28 0.15 53 11 44 0.06 11 23 65.2alex-nonfc 24 6 31 7 26 0.05 28 7 22 0.03 non-free-choicesbuf-send-pkt2 21 6 26 7 20 0.04 27 7 29 0.04 7 14 8.6sbuf-send-ctl 20 6 32 8 33 0.09 28 8 35 0.03 8 43 3.4atod 20 6 26 7 15 0.02 24 7 16 0.01 7 19 2.9pa 18 4 34 6 18 0.12 31 6 22 0.06 state erroralloc-outbound 17 7 29 9 33 0.09 24 9 27 0.04 9 23 2.5wrdata 16 4 20 5 17 0.03 19 5 18 0.01 5 21 0.9�fo 16 4 23 5 15 0.03 20 5 17 0.02 5 15 0.7sbuf-read-ctl 14 6 18 7 16 0.06 16 7 20 0.01 7 15 1.5nousc 12 3 16 4 12 0.01 16 4 12 0.01 4 14 0.5vbe-ex2 8 2 12 4 18 0.08 12 4 18 0.03 4 21 0.5nousc-ser 8 3 10 4 9 0.02 10 4 9 0.01 4 11 0.4sendr-done 7 3 10 4 8 0.02 10 4 8 0.01 4 6 0.4vbe-ex1 5 2 8 3 7 0.01 8 3 7 0.01 3 7 0.3backtracking limit. For another benchmark circuit mmu0, SAT-Circuit solved it in0:87 seconds, as compared to a pre-aborted 406:3 seconds for Vanbekbergen et al.'sapproach [529].Performance of a BDD SAT Solver with Partitioning Preprocessing.The BDD SAT-Circuit solver was implemented in C language. In this case, Guand Puri tested their BDD SAT-Circuit solver with its ability to �nd all solutions(therefore, an optimal solution) for a large number of industrial asynchronous cir-cuit benchmarks including the HP and Philips benchmarks [216, 438]. They alsocompared the performance of their BDD SAT-Circuit solver with the well knownLavagno et al.'s [331] asynchronous circuit design technique. The results of theseexperiments are given in Table 16 and Table 17. Table 16 compares the executiontime of the BDD SAT solver with the execution time of a simple backtracking SATalgorithm of [328]. The experimental results are given for SAT instances generatedfrom Gu and Puri's SAT formula partitioning preprocessor [216]. Since the BDDSAT-Circuit solver yielded all the solutions, they normalized the execution timeof the backtracking algorithm for all the truth assignment. The experimental re-sults (Table 16) show that the BDD SAT solver outperforms the backtracking SAT



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 105Table 16. Experimental results comparing the BDD SAT-Circuit solver and a backtracking SAT algorithm, both with SATformula partitioning preprocessing, on practical asynchronous cir-cuit benchmarks on a SUN SPARC-2 workstation. Time unit: sec-ond.STG BDD Backtracking STG BDD BacktrackingBenchmark SAT satis�ability Benchmark SAT satis�abilityName Solver testing Name Solver testingMr0 58.3 >3,600 Mmu1 28.1 >3,600SbufRamWr 32.7 >3,600 Vbe4a 1.95 >3,600NakPa 0.53 5.4 RamRdSbuf 0.25 76.8AlexNonFc 0.37 0.96 SbufSndPkt2 0.37 88.06SbufSndCtl 18.27 353.6 AtoD 0.15 11.88Pa 0.05 4.50 WrData 0.14 0.24Fifo 0.05 0.10 SbufRdCtl 0.09 0.10NoUsc 0.09 0.16 VbeEx2 3.94 0.80NoUscSer 0.06 0.07 SendrDone 0.05 0.16VbeEx1 0.03 0.04technique for the practical SAT instances representing asynchronous circuit design.They also calculated the implementation area of the designed circuits. Table 17compares their BDD SAT solver with the well known Lavagno et al.'s asynchronouscircuit design technique [331]. The BDD SAT-Circuit solver yielded reduced circuitimplementation area than Lavagno et al.'s algorithm for almost all the circuits inthe benchmark set [331]. Lavagno et al.'s method yields a total area of 449 literalsin 1298.5 seconds. In comparison, for the same benchmarks, the BDD SAT solverachieved an area of 379 literals in 145.7 seconds. In addition, Lavagno et al.'smethod was unable to solve some benchmark circuits, such as Pa and AlexNonFc.These results show that, as compared to existing techniques, the BDD SAT solveris capable of achieving an average of 20% reduction in implementation area forall the benchmarks. According to critical industrial evaluations, this BDD SATsolver o�ers a practical solution for complex industrial asynchronous circuit designproblems. 14. ApplicationsPractical application problems are the driving forces for SAT research. Theyprovide the ultimate benchmarks to test SAT algorithms and techniques. An e�ec-tive SAT algorithm in one application problem will shed light on solving problemsin other application areas.The SAT problem has direct applications in mathematical logic, arti�cial intel-ligence, VLSI engineering, and computing theory. It also has indirect applicationsthrough other transferable problems, e.g., constraint satisfaction problems and con-strained optimization problems [228]. Due to the UniSATmodels, some applicationproblems in the real space are related to SAT as well. In the following, we list someapplications that can be formulated as solved as instances of SAT.



106 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAHTable 17. Comparison of Implementation area and design time ofthe BDD SAT-Circuit solver (with SAT formula partitioning pre-processing) and Lavagno et al.'s technique for practical asynchro-nous circuit benchmarks on a SUN SPARC-2 workstation. Timeunit: second.Benchmark BDD SAT Solver Lavagno and Moon et al. [331]Benchmark Initial Initial Final Circuit CPU Final Circuit CPUName no. of no. of no. of Area time no. of Area timestates signals signal (literals) sec. signal (literals) sec.Mr0 302 11 15 41 58.36 13 86 1084.5Mmu1 82 8 10 38 28.16 10 37 47.8SbufRamWr 58 10 12 47 32.79 12 35 54.6Vbe4a 58 6 8 30 1.95 8 41 5.5NakPa 56 9 10 25 0.53 10 41 20.8RamRdSbuf 36 10 11 25 0.25 11 23 65.2SbufSndPkt2 24 6 7 21 0.37 7 14 8.6SbufSndCtl 21 6 7 17 0.37 8 43 3.4AtoD 20 6 8 30 18.27 7 19 2.9Pa 20 6 7 14 0.15 Internal State ErrorWrData 16 4 5 18 0.05 5 21 0.9Fifo 16 4 5 15 0.14 5 15 0.7SbufRdCtl 14 6 7 16 0.05 7 15 1.5NoUsc 12 3 4 12 0.09 4 14 0.5VbeEx2 12 3 4 12 0.09 4 21 0.5NoUscSer 8 2 4 18 3.94 4 11 0.4AlexNonFc 8 3 4 9 0.06 Non-Free-Choice STGSendrDone 7 3 4 8 0.05 4 6 0.4VbeEx1 5 2 3 6 0.03 3 7 0.3� Mathematics: �nding n-ary relations such as transitive closure [67], detect-ing graph and subgraph isomorphisms [105, 373, 375, 399, 442, 519, 558],the graph coloring problem [57, 243, 369, 375], mathematical cryptology[408, 447], the automata homomorphism problem [198], �nding spanningtrees and Euler tours in a graph [396], solving the traveling salesman prob-lem [287, 288, 332, 400], and logical arithmetic [93].� Computer science and arti�cial intelligence: the constraint satisfaction prob-lem [13, 191, 206, 361, 451], the n-queens problem [191, 242, 485], ex-tended inference [22], logical programming [96, 98, 139, 329], abductiveinference for synthesizing composite hypotheses [297], semantic informationprocessing [22, 161, 397], puzzles and cryptoarithmetic [189, 242, 275,367, 368, 394], truth maintenance [122, 124, 127, 138, 371], produc-tion system [278, 381, 382], the soma cube and instant insanity problem[191], theorem proving [269, 316, 427, 557], and neural network comput-ing [13, 14, 129, 251, 354, 272].� Machine vision: image matching problem [22, 88, 450, 553], line andedge labeling problems [76, 159, 515, 541, 561], stereopsis, scene analysis



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 107and semantics-based region growing [22, 76, 158, 159, 160, 515, 541],the shape and object matching problem [67, 115, 247], syntactic shapeanalysis [116, 246, 310], shape from shading problem [12, 50, 173, 262,263, 265, 264, 274, 364, 412], and image restoration [193].� Robotics: related vision problem [88, 273], packing problem [133], andtrajectory and task planning problems [46, 152].� Computer-aided manufacturing: task planning [393], design [391, 392],solid modeling, con�guring task [174], design cellular manufacturing system,scheduling [164, 356], and 3-dimensional object recognition [230, 264].� Database systems: operations on objects [518, 521], database consistencymaintenance, query-answering and redundancy-checking, query optimiza-tion [78, 518], concurrency control [31, 154, 360], distributed databasesystems [185], truth and belief maintenance [122, 124, 127, 138, 371],the relational homomorphism problem [242, 518], and knowledge organiza-tion for recognition system [244].� Text processing: optical character recognition [90, 387, 502], character con-straint graph model [270], printed text recognition [21, 270], handwrittentext recognition [483], automatic correction of errors in text [520].� Computer graphics: construction of 2-dimensional pictures and 3-dimensionalgraphical objects from constraints, reasoning of the geometrical features of3-dimensional objects [55, 180].� Integrated circuit design automation: circuit modeling [75, 509], logic mini-mization [254], state assignment [529, 530], state minimization [204, 441],asynchronous circuit synthesis [216, 438, 437, 439], I/O encoding for se-quential machines [458], power dissipation estimation [135], logic partition-ing [85, 143, 327, 398, 456], circuit layout and placement [11, 36, 47, 97,112, 134, 234, 494], scheduling and high-level synthesis [48, 325, 409],pin assignment [45, 455], oorplanning [418, 503], interconnection analy-sis [141, 142], routing [1, 71, 131, 132, 233, 335, 407, 444, 448, 470],compaction [68, 140, 245, 306, 326, 346, 463, 480, 527], performanceoptimization [300, 317, 366, 453, 503], testing and test generation [136,280, 328, 146, 419], and veri�cation [315, 505, 516]. Please also see: JunGu, Satis�ability Problems in VLSI Engineering [217], 1996.� Computer architecture design: instruction set optimization [4, 114, 205,283, 436, 440], computer controller optimization [27, 33, 307, 358, 435,441], arithmetic logic circuit design [77], compiler system optimization [7,345], scheduling [37, 137, 186, 187, 231, 338], fault-tolerant computing[24, 261, 20], task partitioning and assignment [39, 40, 111, 276, 481],load balancing [349, 395, 560], real time systems [255, 282, 318, 497,498, 507], data ow consistency analysis [7], data module assignment inmemory system [7], and parallel and distributed processing [443, 468].� High-speed networking: contact the authors.� Communications: contact the authors.� Security: contact the authors.In other areas such as industrial (chemical, transportation, construction, nuclear)engineering, management, medical research, social sciences, there are numerousSAT /CSP applications.



108 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH15. Future WorkA number of future research directions for the satis�ability problem have beendiscussed recently. They are further emphasized in the 1996 DIMACS satis�abilityworkshop.General Boolean Expressions and Evaluation. Many practical applica-tion problems are expressed as Boolean satis�ability problems by a compact set ofgeneral Boolean functions. Although the transformation of a general Boolean ex-pression into CNF can be done in polynomial time, it will result in a substantiallylarger clause-form representation [192, 415]. While this may not be critical incomplexity theory, it will have serious impact on the time to solve these problems.To this end, e�cient representation and manipulation of general Boolean functionsis crucial to solving practical application problems.Theoretical Issues. Recent research on SAT has brought up some interestingtheoretical problems, such as the average time complexity analysis [25, 212, 229,269, 365, 423], determining satis�able-unsatis�able boundary [109, 309, 383],global convergence and local convergence rate [214, 218], and the structure andhardness of input models [102, 170, 196]. Some of the problems, e.g., the averagetime complexity analysis, are extremely di�cult [337]. So far only some preliminarye�orts based on simpli�ed assumptions were given [49, 221, 214, 218].One of the recent e�orts to solve SAT formulas is to �nd subclasses for whichthe problem is solvable in polynomial time [153, 184]. Future work in this directionaims at building hierarchies of formulae classes, analyzing the properties of suchhierarchies, and qualitative evaluation of the hierarchies.SAT Algorithm Development. The development of new algorithms andimproved techniques for satis�ability testing has been a long-term e�ort of theresearch community and the industry. From computation/e�ciency point of view,speci�c data structures and implementation details of SAT algorithms are crucial.The algorithm space shows a number of asymmetrical and irregular places, implyingfurther opportunity for new SAT algorithm development.From an experimental point of view, it is di�cult to �nd a super algorithmthat performs well for a wide range of SAT instances. Existing SAT algorithmscomplement rather than exclude each other by being e�ective for particular probleminstances. One of the future directions is to continue the development of the Multi-SAT algorithm, integrating di�erent algorithms using a cluster of computers [220](Section 11.8). Computer hardware and memory space are becoming increasinglyinexpensive. If one can trade hardware for improved performance, it can show apromising approach (in fact, trading memory space for speed was a basic designphilosophy behind the RISC computer architectures).For important practical applications, there may be signi�cant problem domaininformation. E�cient SAT algorithms may be developed by exploring input- andapplication-speci�c structures (Section 11.5). Specialized algorithms tailored toparticular applications, on the other hand, do provide key insights to general sat-is�ability testing.



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 109Practical Application Case Study. It has been recognized by SAT re-searchers that practical application problems are the driving forces for SAT re-search; they are the ultimate benchmarks to test SAT algorithms. This directionwas further addressed by the NSF, the advisory committee, and the organizingcommittee of the 1996 DIMACS Satis�ability workshop [147, 289, 290]. Therehas been a strong relationship between theory, algorithms, and applications of SAT.A major step in the future is to bring together theorists, algorithmists, and prac-titioners working on SAT and on industrial applications involving SAT, enhanc-ing the interaction between the three research groups. It would be bene�cial toresearch community and to industry if we can apply theoretical and algorithmicresults on SAT to practical problems, while taking these practical problems forfurther theoretical/algorithmic study. In addition to theoretical/algorithmic study,in the future, we will also further concentrate on signi�cant industrial case studiesof SAT, practical applications of SAT algorithms, and practical and industrial SATbenchmarks.Parallel Algorithms and Architectures. Implementing an algorithm onVLSI hardware architectures is a commonpractice to speed up algorithm execution.Not only does it o�er faster execution speed, certain sequential portions of thealgorithmmay be implemented in hardware architectures in parallel form. For SATper se, it has certain granularity at the search tree level, clause level, and variablelevel that lend itself well to parallel processing. A number of parallel algorithms andarchitectures for solving SAT have been developed and have been found to performwell at di�erent levels of granularity. Two basic approaches have been taken inthis direction: implementing parallel SAT inference algorithms on special-purposeVLSI chips [226, 227], and implementing tightly-coupled, parallel SAT algorithmson existing sequential computer machines [207, 212, 212, 493, 492].Algorithm Engineering Approach. Aho, Johnson, Karp, Kosaraju, Mc-Geoch, Papadimitriou, and Pevzner have recently proposed an algorithm engineer-ing approach for the experimental testing of algorithms [8]. They believe that\Within theoretical computer science algorithms are usually studied within highlysimpli�ed models of computation and evaluated by metrics such as their asymp-totic worst-case running time or their competitive ratio. These metrics can beindicative of how algorithms are likely to perform in practice, but they are notsu�ciently accurate to predict actual performance. The situation can be improvedby using models that take into account more details of system architecture andfactors such as data movement and interprocessor communication, but even thenconsiderable experimentation and �ne-tuning is typically required to get the mostout of a theoretical idea. E�orts must be made to ensure that promisingalgorithms discovered by the theory community are implemented, testedand re�ned to the point where they can be usefully applied in practice."16. ConclusionsThe SAT problem is at the core of the class of NP-complete problems and hasmany practical applications. In recent years, many optimization methods, parallel
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