
���������	
����
�	�������

���������������
���������	��
�������
�����������
�������

������������

�
������������	������
�	����

�
�
�� 	����!���
�����������
�������

�"#�

����!�����	����

$�!�%��
&�'���
�%���!&�������������
�����������
��������������!�����!�

(�����
����)������

*��!���
&�����
�&�������+���	������
�	���

�

ABSTRACT
Boolean Satisfiability is probably the most studied of

combinatorial optimization/search problems. Significant effort has
been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the
development of several SAT packages, both proprietary and in the
public domain (e.g. GRASP, SATO) which find significant use in
both research and industry. Most existing complete solvers are
variants of the Davis-Putnam (DP) search algorithm. In this paper
we describe the development of a new complete solver, Chaff,
which achieves significant performance gains through careful
engineering of all aspects of the search – especially a particularly
efficient implementation of Boolean constraint propagation (BCP)
and a novel low overhead decision strategy. Chaff has been able
to obtain one to two orders of magnitude performance
improvement on difficult SAT benchmarks in comparison with
other solvers (DP or otherwise), including GRASP and SATO.
Categories and Subject Descriptors
J6 [Computer-Aided Engineering]: Computer-Aided Design.

General Terms
Algorithms, Verification.

Keywords
Boolean satisfiability, design verification.

1. Introduction
The Boolean Satisfiability (SAT) problem consists of

determining a satisfying variable assignment, V, for a Boolean
function, f, or determining that no such V exists. SAT is one of
the central NP-complete problems. In addition, SAT lies at the
core of many practical application domains including EDA (e.g.
automatic test generation [10] and logic synthesis [6]) and AI
(e.g. automatic theorem proving). As a result, the subject of
practical SAT solvers has received considerable research
attention, and numerous solver algorithms have been proposed
and implemented.

Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been

developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not guaranteed
to be complete (i.e. they are not guaranteed to find a satisfying
assignment if one exists or prove unsatisfiability); as a result,
complete SAT solvers (including ours) are based almost
exclusively on the DP search algorithm.

1.1 Problem Specification
Most solvers operate on problems for which f is specified in

conjunctive normal form (CNF). This form consists of the logical
AND of one or more clauses, which consist of the logical OR of
one or more literals. The literal comprises the fundamental
logical unit in the problem, being merely an instance of a variable
or its complement. (In this paper, complement is represented by
¬.) All Boolean functions can be described in the CNF format.
The advantage of CNF is that in this form, for f to be satisfied
(sat), each individual clause must be sat.

1.2 Basic Davis-Putnam Backtrack Search
We start with a quick review of the basic Davis-Putnam

backtrack search. This is described in the following pseudo-code
fragment:

while (true) {
 if (!decide()) // if no unassigned vars
 return(satisifiable);
 while (!bcp()) {
 if (!resolveConflict())

return(not satisfiable);
 }
}

bool resolveConflict() {
 d = most recent decision not ‘tried both
ways’;

 if (d == NULL) // no such d was found
 return false;

 flip the value of d;
 mark d as tried both ways;
 undo any invalidated implications;
 return true;
}

The operation of decide() is to select a variable that is not
currently assigned, and give it a value. This variable assignment
is referred to as a decision. As each new decision is made, a
record of that decision is pushed onto the decision stack. This
function will return false if no unassigned variables remain and
true otherwise.

The operation of bcp(), which carries out Boolean
Constraint Propagation (BCP), is to identify any variable
assignments required by the current variable state to satisfy f.
Recall that every clause must be sat, for f to be sat. Therefore, if a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

33.1

530

clause consists of only literals with value 0 and one unassigned
literal, then that unassigned literal must take on a value of 1 to
make f sat. Clauses in this state are said to be unit, and this rule
is referred to as the unit clause rule. The necessary variable
assignment associated with giving the unassigned literal a value of
1 is referred to as an implication. In general, BCP therefore
consists of the identification of unit clauses and the creation of
the associated implications. In the pseudo-code from above,
bcp() carries out BCP transitively until either there are no more
implications (in which case it returns true) or a conflict is
produced (in which case it returns false). A conflict occurs when
implications for setting the same variable to both 1 and 0 are
produced.

At the time a decision is made, some variable state exists and
is represented by the decision stack. Any implication generated
following a new decision is directly triggered by that decision, but
predicated on the entire prior variable state. By associating each
implication with the triggering decision, this dependency can be
compactly recorded in the form of an integer tag, referred to as the
decision level (DL). For the basic DP search, the DL is
equivalent to the height of the decision stack at the time the
implication is generated.

To explain what handleConflict() does, we note that
we can invalidate all the implications generated on the most
recent decision level simply by flipping the value of the most
recent decision assignment. Therefore, to deal with a conflict, we
can just undo all those implications, flip the value of the decision
assignment, and allow BCP to then proceed as normal. If both
values have already been tried for this decision, then we backtrack
through the decision stack until we encounter a decision that has
not been tried both ways, and proceed from there in the manner
described above. Clearly, in backtracking through the decision
stack, we invalidate any implications with decision levels equal to
or greater than the decision level to which we backtracked. If no
decision can be found which has not been tried both ways, that
indicates that f is not satisfiable.

Thus far we have focused on the overall structure of the basic
DP search algorithm. The following sections describe features
specific to Chaff.

2. Optimized BCP
In practice, for most SAT problems, a major potion (greater

than 90% in most cases) of the solvers’ run time is spent in the
BCP process. Therefore, an efficient BCP engine is key to any
SAT solver.

To restate the semantics of the BCP operation: Given a
formula and set of assignments with DLs, deduce any necessary
assignments and their DLs, and continue this process transitively
by adding the necessary assignments to the initial set. Necessary
assignments are determined exclusively by repeated applications
of the unit clause rule. Stop when no more necessary assignments
can be deduced, or when a conflict is identified.

For the purposes of this discussion, we say that a clause is
implied iif all but one of its literals is assigned to zero. So, to
implement BCP efficiently, we wish to find a way to quickly visit
all clauses that become newly implied by a single addition to a set
of assignments.

The most intuitive way to do this is to simply look at every
clause in the database clauses that contain a literal that the current
assignment sets to 0. In effect, we would keep a counter for each
clause of how many value 0 literals are in the clause, and modify

the counter every time a literal in the clause is set to 0. However,
if the clause has N literals, there is really no reason that we need
to visit it when 1, 2, 3, 4, … , N-1 literals are set to zero. We
would like to only visit it when the “number of zero literals”
counter goes from N-2 to N-1.

As an approximation to this goal, we can pick any two
literals not assigned to 0 in each clause to watch at any given
time. Thus, we can guarantee that until one of those two literals is
assigned to 0, there cannot be more than N-2 literals in the clause
assigned to zero, that is, the clause is not implied. Now, we need
only visit each clause when one of its two watched literals is
assigned to zero. When we visit each clause, one of two
conditions must hold:

(1) The clause is not implied, and thus at least 2 literals are not

assigned to zero, including the other currently watched
literal. This means at least one non-watched literal is not
assigned to zero. We choose this literal to replace the one
just assigned to zero. Thus, we maintain the property that the
two watched literals are not assigned to 0.

(2) The clause is implied. Follow the procedure for visiting an
implied clause (usually, this will generate a new implication,
unless the unless the clause is already sat). One should take
note that the implied variable must always be the other
watched literal, since, by definition, the clause only has one
literal not assigned to zero, and one of the two watched
literals is now assigned to zero.

It is invariant that in any state where a clause can become

newly implied, both watched literals are not assigned to 0. A key
benefit of the two literal watching scheme is that at the time of
backtracking, there is no need to modify the watched literals in
the clause database. Therefore, unassigning a variable can be done
in constant time. Further, reassigning a variable that has been
recently assigned and unassigned will tend to be faster than the
first time it was assigned. This is true because the variable may
only be watched in a small subset of the clauses in which was
previously watched. This significantly reduces the total number of
memory accesses, which, exacerbated by the high data cache miss
rate is the main bottleneck for most SAT implementations. Figure
1 illustrates this technique. It shows how the watched literals for a
single clause change under a series of assignments and
unassignments. Note that the initial choice of watched literals is
arbitrary, and that for the purposes of this example, the exact
details of how the sequence of assignments and unassignments is
being generated is irrelevant.

One of the SATO[13] BCP schemes has some similarities to
this one in the sense that it also watches two literals (called the
head and tail literals by its authors) to detect unit clauses and
conflicts. However, our algorithm is different from SATO’s in
that we do not require a fixed direction of motion for the watched
literals while in SATO, the head literal can only move towards tail
literal and vice versa. Therefore, in SATO, unassignment has the
same complexity as assignment.

3. Variable State Independent Decaying Sum
(VSIDS) Decision Heuristic

Decision assignment consists of the determination of which
new variable and state should be selected each time decide() is
called. A lack of clear statistical evidence supporting one
decision strategy over others has made it difficult to determine

531

what makes a good decision strategy and what makes a bad one.
To explain this further, we briefly review some common
strategies. For a more comprehensive review of the effect of
decision strategies on SAT solver performance, see [7] by Silva.

The simplest possible strategy is to simply select the next
decision randomly from among the unassigned variables, an
approach commonly denoted as RAND. At the other extreme,
one can employ a heuristic involving the maximization of some
moderately complex function of the current variable state and the
clause database (e.g. BOHM and MOMs heuristics).

One of the most popular strategies, which falls somewhere in
the middle of this spectrum, is the dynamic largest individual sum
(DLIS) heuristic, in which one selects the literal that appears most
frequently in unresolved clauses. Variations on this strategy (e.g.
RDLIS and DLCS) are also possible. Other slightly more
sophisticated heuristics (e.g. JW-OS and JE-TS) have been
developed as well, and the reader is referred again to [7] for a full
description of these other methods.

Clearly, with so many strategies available, it is important to
understand how best to evaluate them. One can consider, for
instance, the number of decisions performed by the solver when
processing a given problem. Since this statistic has the feel of a
good metric for analyzing decision strategies ─ fewer decisions
ought to mean smarter decisions were made, the reasoning goes ─
it has been used almost exclusively as the comparator in the scant
literature on the subject. However, not all decisions yield an
equal number of BCP operations, and as a result, a shorter
sequence of decisions may actually lead to more BCP operations
than a longer sequence of decisions, begging the question: what
does the number of decisions really tell us? The same argument
applies to statistics involving conflicts. Furthermore, it is also
important to recognize that not all decision strategies have the
same computational overhead, and as a result, the “best” decision
strategy ─ even if that determination is based on a good
combination of the available computation statistics ─ may
actually be the slowest if the overhead is significant enough. All
we really want to know is which strategy is fastest, regardless of
the computation statistics. No clear answer exists in the literature,
though based on [7] DLIS would appear to be a solid all-around
strategy. However, even RAND performs well on the problems
described in that paper. While developing our solver, we
implemented and tested all of the strategies outlined above, and
found that we could design a considerably better strategy for the
range of problems on which we tested our solver. This strategy,
termed Variable State Independent Decaying Sum (VSIDS) is
described as follows:

(1) Each variable in each polarity has a counter, initialized to 0.
(2) When a clause is added to the database, the counter

associated with each literal in the clause is incremented.
(3) The (unassigned) variable and polarity with the highest

counter is chosen at each decision.
(4) Ties are broken randomly by default, although this is

configurable
(5) Periodically, all the counters are divided by a constant.

Also, in order to choose the variable with the highest counter
value even more quickly at decision time, a list of the unassigned
variables sorted by counter value is maintained during BCP and
conflict analysis (using an STL set in the current implementation).

Overall, this strategy can be viewed as attempting to satisfy
the conflict clauses but particularly attempting to satisfy recent
conflict clauses. Since difficult problems generate many conflicts
(and therefore many conflict clauses), the conflict clauses
dominate the problem in terms of literal count, so this approach
distinguishes itself primarily in how the low pass filtering of the
statistics (indicated by step (5)) favors the information generated
by recent conflict clauses. We believe this is valuable because it is
the conflict clauses that primarily drive the search process on
difficult problems. And so this decision strategy can be viewed as
directly coupling that driving force to the decision process.

Of course, another key property of this strategy is that since
it is independent of the variable state (except insofar as we must
choose an unassigned variable) it has very low overhead, since the
statistics are only updated when there is a conflict, and
correspondingly, a new conflict clause. Even so, decision related
computation is still accounts for ~10% of the run-time on some
difficult instances. (Conflict analysis is also ~10% of the run-time,
with the remaining ~80% of the time spent in BCP.) Ultimately,
employing this strategy dramatically (i.e. an order of magnitude)
improved performance on all the most difficult problems without
hurting performance on any of the simpler problems, which we
viewed as the true metric of its success.

4. Other Features
Chaff employs a conflict resolution scheme that is

philosophically very similar to GRASP, employing the same type
of conflict analysis, conflict clause addition, and UIP-
identification. There are some differences that the authors believe
have dramatically enhanced the simplicity and elegance of the
implementation, but due to space limitations, we will not delve
into that subject here.

4.1 Clause Deletion
Like many other solvers, Chaff supports the deletion of

added conflict clauses to avoid a memory explosion. However,
since the method for doing so in Chaff differs somewhat from the
standard method, we briefly describe it here. Essentially, Chaff
uses scheduled lazy clause deletion. When each clause is added, it
is examined to determine at what point in the future, if any, the
clause should be deleted. The metric used is relevance, such that
when more than N (where N is typically 100-200) literals in the
clause will become unassigned for the first time, the clause will be
marked as deleted. The actual memory associated with deleted
clauses is recovered with an infrequent monolithic database
compaction step.

4.2 Restarts
Chaff also employs a feature referred to as restarts. Restarts

in general consist of a halt in the solution process, and a restart of
the analysis, with some of the information gained from the
previous analysis included in the new one. As implemented in
Chaff, a restart consists of clearing the state of all the variables
(including all the decisions) then proceeding as normal. As a
result, any still-relevant clauses added to the clause database at
some time prior to the restart are still present after the restart. It is
for this reason that the solver will not simply repeat the previous
analysis following a restart. In addition, one can add a certain
amount of transient randomness to the decision procedure to aid
in the selection of a new search path. Such randomness is
typically small, and lasts only a few decisions. Of course, the

532

frequency of restarts and the characteristics of the transient
randomness are configurable in the final implementation. It
should be noted that restarts impact the completeness of the
algorithm. If all clauses were kept, however, the algorithm would
still be complete, so completeness could be maintained by
increasing the relevance parameter N slowly with time. GRASP
uses a similar strategy to maintain completeness by extending the
restart period with each restart (Chaff also does this by default,
since it generally improves performance).

Note that Chaff’s restarts differ from those employed by, for
instance, GRASP in that they do not affect the current decision
statistics. They mainly are intended to provide a chance to change
early decisions in view of the current problem state, including all
added clauses and the current search path. With default settings,
Chaff may restart in this sense thousands of times on a hard
instance (sat or unsat), although similar results can often (or at
least sometimes) be achieved with restarts completely disabled.

5. Experimental Results
On smaller examples with relatively inconsequential run

times, Chaff is comparable to any other solver. However, on
larger examples where other solvers struggle or give up, Chaff
dominates by completing in up to one to two orders of magnitude
less time than the best public domain solvers.

Chaff has been run on and compared with other solvers on
almost a thousand benchmark formulas. Obviously, it is
impossible to provide complete results for each individual
benchmark. Instead, we will present summary results for each
class of benchmarks. Comparisons were done with GRASP, as
well as SATO. GRASP provides for a range of parameters that
can be individually tuned. Two different recommended sets of
parameters were used (GRASP(A) and GRASP(B)). For SATO,
the default settings as well as –g100 (which restricts the size of
added clauses to be 100 literals as opposed to the default of 20)
were used. Chaff was used with the default cherry.smj
configuration in all cases, except for the dimacs pret* instances,
which required a single parameter change to the decision strategy.
All experiments were done on a 4 CPU 336 Mhz UltraSparc II
Solaris machine with 4GB main memory. Memory usage was
typically 50-150MB depending on the run time of each instance.

Table 1 provides the summary results for the DIMACs [4]
benchmark suite. Each row is a set of individual benchmarks
grouped by category. For GRASP, both options resulted in several
benchmarks aborting after 100secs, which was sufficient for both
SATO and Chaff to complete all instances. On examples that the
others also complete, Chaff is comparable to the others, with
some superiority on the hole and par16 classes, which seem to be
among the more difficult ones. Overall, most of the DIMACs
benchmarks are now considered easy, as there are a variety of
solvers that excel on various subsets of them. Note that some of
the DIMACS benchmarks, such as the large 3-sat instance sets ‘f’
and ‘g’, as well as the par32 set were not used, since none of the
solvers considered here performs well on these benchmark
classes.

The next set of experiments was done using the CMU
Benchmark Suite [11]. This consists of hard problems, satisfiable
and unsatisfiable, arising from verification of microprocessors (for
a detailed description of these benchmarks and Chaff’s
performance on them, see [12]). It is here that Chaff’s prowess
begins to show more clearly. For SSS.1.0, Chaff is about an order
of magnitude faster than the others and can complete all the

examples within 100secs. Both GRASP and SATO abort the 5
hard unsat instances in this set, which are known to take both
GRASP and SATO significantly longer to complete than the sat
instances. Results on using randomized restart techniques with the
newest version of GRASP have been reported on a subset of these
examples in [1]. We have been unable to reproduce all of those
results, due to the unavailability of the necessary configuration
profiles for GRASP (again, see [12]). However, comparing our
experiments with the reported results shows the superiority of
Chaff, even given a generous margin for the differences in the
testing environments. For SSS.1.0.a Chaff completed all 9 of the
benchmarks – SATO and GRASP could do only two. For SSS-
SAT.1.0, SATO aborted 32 of the first 41 instances when we
decided to stop running any further instances for lack of hope and
limited compute cycles. GRASP was not competitive at all on this
set. Chaff again completed all 100 in less than 1000secs, within a
100sec limit for each instance. In FVP-UNSAT.1.0 both GRASP
and SATO could only complete one easy example and aborted the
next two. Chaff completed all 4. Finally for VLIW-SAT.1.0 both
SATO and GRASP aborted the first 19 of twenty instances tried.
Chaff finished all 100 in less than 10000 seconds total.

For many of these benchmarks, only incomplete solvers (not
considered here) can find solutions in time comparable to Chaff,
and for the harder unsatisfiable instances in these benchmarks, no
solver the authors were able to run was within 10x of Chaff’s
performance, which prohibited running them on the harder
problems. When enough information is released to run GRASP
and locally reproduce results as in [1], these results will be
revisited, although the results given would indicate that Chaff is
still a full 2 orders of magnitude faster on the hard unsat
instances, and at least 1 order of magnitude faster on the
satisfiable instances.

7. Conclusions
This paper describes a new SAT solver, Chaff, which has

been shown to be at least an order of magnitude (and in several
cases, two orders of magnitude) faster than existing public domain
SAT solvers on difficult problems from the EDA domain. This
speedup is not the result of sophisticated learning strategies for
pruning the search space, but rather, of efficient engineering of
the key steps involved in the basic search algorithm. Specifically,
this speedup is derived from:

• a highly optimized BCP algorithm, and

• a decision strategy highly optimized for speed, as well
as focused on recently added clauses.

8. References
[1] Baptista, L., and Marques-Silva, J.P., “Using Randomization

and Learning to Solve Hard Real-World Instances of
Satisfiability,” Proceedings of the 6th International Conference
on Principles and Practice of Constraint Programming (CP),
September 2000.

[2] Bayardo, R. and Schrag, R.: Using CSP look-back techniques
to solve real-world SAT instances, in Proc. of the 14th Nat.
(US) Conf. on Artificial Intelligence (AAAI-97), AAAI
Press/The MIT Press, 1997, pp. 203–208.

[3] Biere, A., Cimatti, A., Clarke, E.M., and Zhu, Y., “Symbolic
Model Checking without BDDs,” Tools and Algorithms for the

533

Analysis and Construction of Systems (TACAS'99), number
1579 in LNCS. Springer-Verlag, 1999.
(http://www.cs.cmu.edu/~modelcheck/bmc/bmc-
benchmarks.html)

[4] DIMACS benchmarks available at
ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks

[5] Freeman, J.W., “Improvements to Propositional Satisfiability
Search Algorithms,” Ph.D. Dissertation, Department of
Computer and Information Science, University of
Pennsylvania, May 1995.

[6] Kunz, W, and Sotoffel, D., Reasoning in Boolean Networks,
Kluwer Academic Publishers, 1997.

[7] Marques-Silva, J.P., “The Impact of Branching Heuristics in
Propositional Satisfiability Algorithms,” Proceedings of the 9th
Portuguese Conference on Artificial Intelligence (EPIA),
September 1999.

[8] Marques-Silva, J. P., and Sakallah, K. A., “GRASP: A Search
Algorithm for Propositional Satisfiability,” IEEE Transactions
on Computers, vol. 48, 506-521, 1999.

[9] McAllester, D., Selman, B. and Kautz, H.: Evidence for
invariants in local search, in Proceedings of AAAI’97, MIT
Press, 1997, pp. 321–326.

[10] Stephan, P., Brayton, R., and Sangiovanni-Vencentelli, A.,
“Combinational Test Generation Using Satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 15, 1167-1176, 1996.

 [11] Velev, M., FVP-UNSAT.1.0, FVP-UNSAT.2.0, VLIW-
SAT.1.0, SSS-SAT.1.0, Superscalar Suite 1.0, Superscalar
Suite 1.0a, Available from: http://www.ece.cmu.edu/~mvelev

[12] Velev, M. and Bryant, R., “Effective Use of Boolean
Satisfiability Procedures in the Formal Verification of
Superscalar and VLIW Microprocessors,” In Proceedings of
the Design Automation Conference, 2001.

[13] Zhang, H., “SATO: An efficient propositional prover,”
Proceedings of the International Conference on Automated
Deduction, pages 272-275, July 1997.

-V1 V4 -V7 V11 V12 V15 -V1 V4 -V7 V11 V12 V15

-V1 V4 -V7 V11 V12 V15 -V1 V4 -V7 V11 V12 V15

-V1 V4 -V7 V11 V12 V15 -V1 V4 -V7 V11 V12 V15

-V1 V4 -V7 V11 V12 V15

V1=1

V4=0

V7= 0
V12=1

V15=0
V7=1
V11=0

Implication: V12=1

Conflict, Backtrack.
V15=X V11=X V7=X V4=X

V4=0 V12

V12

V12

Literal with value 0

Literal with value 1

Literal with value X (unassigned)

Figure 1: BCP using two watched literals

All times are in seconds.

I = total number of instances in set

A = number of instances aborted. If a number n in () follows
this, then only n instances in the set were attempted due to
frequency of aborts.

Time = total user time for search, including aborted instances
* = SATO was run with (B) for this set.

= GRASP was run with (B) for this set.

^ = Chaff was run with (B) for this set.

All solvers run with (A) options unless marked. Shown result is
for whichever set of options was better for each set.

534

GRASP options (A):

 +T100 +B10000000 +C10000000 +S10000

 +V0 +g40 +rt4 +dMSMM +dr5

GRASP options (B):

 +T100 +B10000000 +C10000000 +S10000

 +g20 +rt4 +dDLIS

SATO options (A): -g100

SATO options (B): [default]

Chaff options (A): cherry.smj config

Chaff options (B): cherry.smj config

 plus maxLitsForConfDriven = 10

Table 1 GRASP SATO Chaff

 I

Time A

Time A

Time A

ii16 10 241.1# 1 1.3 0 6.2 0

ii32 17 2.3# 0 2.1* 0 0.6 0

ii8 14 1.2 0 0.2 0 0.1 0

aim200 24 6.5 0 0.3 0 0.3 0

aim100 24 0.6# 0 0.1 0 0.1 0

pret 8 5.9# 0 0 0 0.7^ 0

Par8 10 0.1# 0 0.1 0 0.1 0

ssa 8 2.7# 0 4.2 0 0.3 0

jnh 50 5.7# 0 0.7 0 0.6 0

dubois 13 0.3 0 0.1 0 0.2 0

hole 5 221.8# 2 99.9* 0 97.6 0

par16 10 845.9# 7 256* 0 42.6 0

Abort timeout was 100s for these sets.

Table 2 GRASP SATO Chaff

 I Time A Time A Time A

SSS 1.0 48 770 5& 16795 5 48 0

SSS 1.0a 8 6031 6 790 6& 20 0

SSS-SAT 1.0 100 33708 32 (41) 457 0

FVP-UNSAT 1.0 4 2018 2 (3) 2007 2 (3) 735 0

VLIW-SAT 1.0 100 19 (20) 19 (20) 3143 0

Abort timeout was 1000s for these sets, except for &’ed sets
where it was 100s.

535

